
Algebraic techniques for cryptanalysis of
rank-based cryptosystems

Simona Samardjiska
(joint work with

Paolo Santini, Edoardo Persichetti and Gustavo Banegas)

Radboud University, Nijmegen, The Netherlands

2019-07-09
AC19

1 / 22

Ongoing NIST competition for Post Quantum Cryptography

I Second roundMQ-based candidates
I LUOV
I Rainbow
I GeMSS
I MQDSS

I Second round Rank based candidates
I Rollo (merge of LAKE, LOCKER, Ouroboros-R)
I RQC

I Best attacks - guessing + solving systems of equations
I Except for MQDSS and LUOV, all are instances of a MinRank problem

I Decoding in the rank metric is essentially structured MinRank

I In this talk: Using MinRank to mount
Decryption failure attack for Rank based cryptosystems

2 / 22

Ongoing NIST competition for Post Quantum Cryptography

I Second roundMQ-based candidates
I LUOV
I Rainbow
I GeMSS
I MQDSS

I Second round Rank based candidates
I Rollo (merge of LAKE, LOCKER, Ouroboros-R)
I RQC

I Best attacks - guessing + solving systems of equations
I Except for MQDSS and LUOV, all are instances of a MinRank problem

I Decoding in the rank metric is essentially structured MinRank

I In this talk: Using MinRank to mount
Decryption failure attack for Rank based cryptosystems

2 / 22

Ongoing NIST competition for Post Quantum Cryptography

I Second roundMQ-based candidates
I LUOV
I Rainbow
I GeMSS
I MQDSS

I Second round Rank based candidates
I Rollo (merge of LAKE, LOCKER, Ouroboros-R)
I RQC

I Best attacks - guessing + solving systems of equations
I Except for MQDSS and LUOV, all are instances of a MinRank problem

I Decoding in the rank metric is essentially structured MinRank

I In this talk: Using MinRank to mount
Decryption failure attack for Rank based cryptosystems

2 / 22

MinRank MR(n, m, r , M1, . . . , Mm)

Input: n,m, r ∈ N, and M1, . . . ,Mm ∈Mn(Fq).
Question: Find – if any – a nonzero m-tuple (λ1, . . . , λm) ∈ Fm

q s.t.:

Rank
(m∑

i=1
λi Mi

)
6 r .

[Courtois ’01], [Buss & Shallit ’99]

I Solving MinRank
I Kernel method [Goubin-Courtois’00]
I Kipnis-Shamir method [Kipnis-Shamir’99]
I Minors method [Faugère et al.’08]

3 / 22

MinRank MR(n, m, r , M1, . . . , Mm)

Input: n,m, r ∈ N, and M1, . . . ,Mm ∈Mn(Fq).
Question: Find – if any – a nonzero m-tuple (λ1, . . . , λm) ∈ Fm

q s.t.:

Rank
(m∑

i=1
λi Mi

)
6 r .

[Courtois ’01], [Buss & Shallit ’99]

I Solving MinRank
I Kernel method [Goubin-Courtois’00]
I Kipnis-Shamir method [Kipnis-Shamir’99]
I Minors method [Faugère et al.’08]

3 / 22

Solving MinRank - Kernel method

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ Dim

(
Ker

(m∑
i=1

λi Mi

))
> n − k

I Guess dm
n e vectors vi ∈ Ker

(∑m
i=1 λi Mi

)
I Form linear equations in the λi variables

vi ·

(m∑
i=1

λi Mi

)
= 01×n.

I Complexity: O
(
qdm

n e·r m3)

4 / 22

Solving MinRank - Kernel method

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ Dim

(
Ker

(m∑
i=1

λi Mi

))
> n − k

I Guess dm
n e vectors vi ∈ Ker

(∑m
i=1 λi Mi

)
I Form linear equations in the λi variables

vi ·

(m∑
i=1

λi Mi

)
= 01×n.

I Complexity: O
(
qdm

n e·r m3)

4 / 22

Solving MinRank - Kernel method

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ Dim

(
Ker

(m∑
i=1

λi Mi

))
> n − k

I Guess dm
n e vectors vi ∈ Ker

(∑m
i=1 λi Mi

)
I Form linear equations in the λi variables

vi ·

(m∑
i=1

λi Mi

)
= 01×n.

I Complexity: O
(
qdm

n e·r m3)

4 / 22

Solving MinRank - Kipnis-Shamir modeling

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ ∃ x (1), . . . , x (n−r) ∈ Ker

(m∑
i=1

λi Mi

)
1 x1

1 . . . x (1)
r

. . .
...

...
1 x (n−r)

1 . . . x (n−r)
r

 ·(m∑
i=1

λi Mi

)
= 0n×n.

n (n − r) quadratic (bilinear) equations in r (n − r) + m variables

I Relinearization [Kipnis & Shamir ’99]
I Gröbner bases [Faugère & Levy-dit-Vehel & Perret ’08]

I Complexity: O
((n+dreg

dreg

)ω
)
[Faugère ’02]

dreg 6 min(nX , nY) + 1,

for bilinear system in X , Y blocks of variables of sizes nX , nY .

5 / 22

Solving MinRank - Kipnis-Shamir modeling

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ ∃ x (1), . . . , x (n−r) ∈ Ker

(m∑
i=1

λi Mi

)
1 x1

1 . . . x (1)
r

. . .
...

...
1 x (n−r)

1 . . . x (n−r)
r

 ·(m∑
i=1

λi Mi

)
= 0n×n.

n (n − r) quadratic (bilinear) equations in r (n − r) + m variables

I Relinearization [Kipnis & Shamir ’99]

I Gröbner bases [Faugère & Levy-dit-Vehel & Perret ’08]

I Complexity: O
((n+dreg

dreg

)ω
)
[Faugère ’02]

dreg 6 min(nX , nY) + 1,

for bilinear system in X , Y blocks of variables of sizes nX , nY .

5 / 22

Solving MinRank - Kipnis-Shamir modeling

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ ∃ x (1), . . . , x (n−r) ∈ Ker

(m∑
i=1

λi Mi

)
1 x1

1 . . . x (1)
r

. . .
...

...
1 x (n−r)

1 . . . x (n−r)
r

 ·(m∑
i=1

λi Mi

)
= 0n×n.

n (n − r) quadratic (bilinear) equations in r (n − r) + m variables

I Relinearization [Kipnis & Shamir ’99]
I Gröbner bases [Faugère & Levy-dit-Vehel & Perret ’08]

I Complexity: O
((n+dreg

dreg

)ω
)
[Faugère ’02]

dreg 6 min(nX , nY) + 1,

for bilinear system in X , Y blocks of variables of sizes nX , nY .

5 / 22

Solving MinRank - Minors modeling

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ all minors of size r + 1 of

(k∑
i=1

λi Mi

)
vanish.

(
n

r + 1

)2
equations in m variables

I [Faugère & Levy-dit-Vehel & Perret ’08],
[Faugère & Safey El Din & Spaenlehauer ’10]

I Less variables than the Kipnis-Shamir modeling
but equations of degree r + 1.

I Complexity: O
((m

r+1
)ω
)
if fully linearizable [Faugère ’02]

I Can be more efficient than Kipnis-Shamir method
(depends on parameters)

6 / 22

Solving MinRank - Minors modeling

Rank
(m∑

i=1
λi Mi

)
≤ r ⇔ all minors of size r + 1 of

(k∑
i=1

λi Mi

)
vanish.

(
n

r + 1

)2
equations in m variables

I [Faugère & Levy-dit-Vehel & Perret ’08],
[Faugère & Safey El Din & Spaenlehauer ’10]

I Less variables than the Kipnis-Shamir modeling
but equations of degree r + 1.

I Complexity: O
((m

r+1
)ω
)
if fully linearizable [Faugère ’02]

I Can be more efficient than Kipnis-Shamir method
(depends on parameters)

6 / 22

Rank metric essentials
I B = {B1, · · · ,Bm} - basis of Fqm over Fq

v ∈ Fqm ↔ v =
m∑

i=1
Fi (v)Bi

v ∈ Fn
qm = [v1, · · · , vn]↔ V̄ =


F1(v1) F1(v2) · · · F1(vn)
F2(v1) F2(v2) · · · F2(vn)

...
...

. . .
...

Fm(v1) Fm(v2) · · · Fm(vn)

 ∈ Fm×n
q .

I Rank distance between a,b ∈ Fn
qm

rd(a,b) =
∣∣Ā− B̄

∣∣ .
I Support of v ∈ Vn - 〈v〉 - the subspace generated by v1, · · · , vn

I Isometry: If W ∈ GLn(Fq)
|b| = |b ·W|.

7 / 22

Rank metric essentials
I B = {B1, · · · ,Bm} - basis of Fqm over Fq

v ∈ Fqm ↔ v =
m∑

i=1
Fi (v)Bi

v ∈ Fn
qm = [v1, · · · , vn]↔ V̄ =


F1(v1) F1(v2) · · · F1(vn)
F2(v1) F2(v2) · · · F2(vn)

...
...

. . .
...

Fm(v1) Fm(v2) · · · Fm(vn)

 ∈ Fm×n
q .

I Rank distance between a,b ∈ Fn
qm

rd(a,b) =
∣∣Ā− B̄

∣∣ .
I Support of v ∈ Vn - 〈v〉 - the subspace generated by v1, · · · , vn

I Isometry: If W ∈ GLn(Fq)
|b| = |b ·W|.

7 / 22

Rank metric essentials
I B = {B1, · · · ,Bm} - basis of Fqm over Fq

v ∈ Fqm ↔ v =
m∑

i=1
Fi (v)Bi

v ∈ Fn
qm = [v1, · · · , vn]↔ V̄ =


F1(v1) F1(v2) · · · F1(vn)
F2(v1) F2(v2) · · · F2(vn)

...
...

. . .
...

Fm(v1) Fm(v2) · · · Fm(vn)

 ∈ Fm×n
q .

I Rank distance between a,b ∈ Fn
qm

rd(a,b) =
∣∣Ā− B̄

∣∣ .

I Support of v ∈ Vn - 〈v〉 - the subspace generated by v1, · · · , vn

I Isometry: If W ∈ GLn(Fq)
|b| = |b ·W|.

7 / 22

Rank metric essentials
I B = {B1, · · · ,Bm} - basis of Fqm over Fq

v ∈ Fqm ↔ v =
m∑

i=1
Fi (v)Bi

v ∈ Fn
qm = [v1, · · · , vn]↔ V̄ =


F1(v1) F1(v2) · · · F1(vn)
F2(v1) F2(v2) · · · F2(vn)

...
...

. . .
...

Fm(v1) Fm(v2) · · · Fm(vn)

 ∈ Fm×n
q .

I Rank distance between a,b ∈ Fn
qm

rd(a,b) =
∣∣Ā− B̄

∣∣ .
I Support of v ∈ Vn - 〈v〉 - the subspace generated by v1, · · · , vn

I Isometry: If W ∈ GLn(Fq)
|b| = |b ·W|.

7 / 22

Rank metric essentials
I B = {B1, · · · ,Bm} - basis of Fqm over Fq

v ∈ Fqm ↔ v =
m∑

i=1
Fi (v)Bi

v ∈ Fn
qm = [v1, · · · , vn]↔ V̄ =


F1(v1) F1(v2) · · · F1(vn)
F2(v1) F2(v2) · · · F2(vn)

...
...

. . .
...

Fm(v1) Fm(v2) · · · Fm(vn)

 ∈ Fm×n
q .

I Rank distance between a,b ∈ Fn
qm

rd(a,b) =
∣∣Ā− B̄

∣∣ .
I Support of v ∈ Vn - 〈v〉 - the subspace generated by v1, · · · , vn

I Isometry: If W ∈ GLn(Fq)
|b| = |b ·W|.

7 / 22

LRPC codes

A Low-Rank Parity-Check (LRPC) code C over Fqm of length n, dimension
k and rank d is described by an (n − k)× n parity-check matrix

H = {hi,j} ∈ F(n−k)×n
qm ,

I Each coefficient hi,j can be written as

hi,j =
d∑

l=1
hi,j,lFl , hi,j,l ∈ Fq,

each Fi ∈ Fqm , and F = 〈F1,F2, · · · ,Fd〉 is a Fq subspace of Fqm .

8 / 22

Decoding of LRPC codes

Let s = (s1, . . . , sn−k) ∈ Fn−k
qm be the syndrome of e, i.e. He> = s.

Decoding: Recover e from the knowledge of s.

Crucial facts:
I If hi,j ∈ F = 〈F1,F2, · · · ,Fd〉 and e ∈ E = 〈E1,E2, · · · ,Er 〉 then

si ∈ 〈F1E1,F1E2, . . . ,FdEr 〉

I Assume S = 〈s1, s2, . . . , sn−k〉 = 〈F1E1,F1E2, . . . ,FdEr 〉 then:
1. Set Si = F−1

i .S. Then

Si = F−1
i .〈. . .FiE1,FiE2, . . . ,FiEr ...〉 ⇒ E = 〈E1,E2, · · · ,Er 〉 ⊂ Si

2. Find E = S1 ∩ S2 ∩ · · · ∩ Sd

3. Find e by solving He> = s

9 / 22

Decoding of LRPC codes

Let s = (s1, . . . , sn−k) ∈ Fn−k
qm be the syndrome of e, i.e. He> = s.

Decoding: Recover e from the knowledge of s.

Crucial facts:
I If hi,j ∈ F = 〈F1,F2, · · · ,Fd〉 and e ∈ E = 〈E1,E2, · · · ,Er 〉 then

si ∈ 〈F1E1,F1E2, . . . ,FdEr 〉

I Assume S = 〈s1, s2, . . . , sn−k〉 = 〈F1E1,F1E2, . . . ,FdEr 〉 then:
1. Set Si = F−1

i .S. Then

Si = F−1
i .〈. . .FiE1,FiE2, . . . ,FiEr ...〉 ⇒ E = 〈E1,E2, · · · ,Er 〉 ⊂ Si

2. Find E = S1 ∩ S2 ∩ · · · ∩ Sd

3. Find e by solving He> = s

9 / 22

Decoding of LRPC codes

Let s = (s1, . . . , sn−k) ∈ Fn−k
qm be the syndrome of e, i.e. He> = s.

Decoding: Recover e from the knowledge of s.

Crucial facts:
I If hi,j ∈ F = 〈F1,F2, · · · ,Fd〉 and e ∈ E = 〈E1,E2, · · · ,Er 〉 then

si ∈ 〈F1E1,F1E2, . . . ,FdEr 〉

I Assume S = 〈s1, s2, . . . , sn−k〉 = 〈F1E1,F1E2, . . . ,FdEr 〉 then:
1. Set Si = F−1

i .S. Then

Si = F−1
i .〈. . .FiE1,FiE2, . . . ,FiEr ...〉 ⇒ E = 〈E1,E2, · · · ,Er 〉 ⊂ Si

2. Find E = S1 ∩ S2 ∩ · · · ∩ Sd

3. Find e by solving He> = s

9 / 22

Decoding of LRPC codes

Decoding failures:

1. When Dim
(
〈EF 〉

)
< rd : this happens with probability P1 = d

qm−rd

2. When E 6=
⋂d

i=1 Si : when m > rd + 8, this happens with probability P2 � 2−30

3. When Dim
(
S
)
< rd this happens with probability P3 = 1

qn−k+1−rd

I In practice usually P1,P2 � P3.

10 / 22

LRPC cryptosystems

Basically any cryptosystem that
I uses LRPC codes (low rank of Hsecret)
I uses RHsecret = H to hide the secret Hsecret

I relies on the Rank syndrome decoding problem:

Find e such that He> = s and |e| 6 r .

Some examples:
I LRPC cryptosystem [Gaborit et al.’13]
I McNie [Kim et al.’17] (NIST 1st round candidate)
I ROLLO (Rank-Ouroboros, LAKE and LOCKER) [Aguilar Melchor et al. ’17]

(NIST 2nd round candidate)
I Durandal [Aragon et al.’19]

11 / 22

LRPC cryptosystems

Basically any cryptosystem that
I uses LRPC codes (low rank of Hsecret)
I uses RHsecret = H to hide the secret Hsecret

I relies on the Rank syndrome decoding problem:

Find e such that He> = s and |e| 6 r .

Some examples:
I LRPC cryptosystem [Gaborit et al.’13]
I McNie [Kim et al.’17] (NIST 1st round candidate)
I ROLLO (Rank-Ouroboros, LAKE and LOCKER) [Aguilar Melchor et al. ’17]

(NIST 2nd round candidate)
I Durandal [Aragon et al.’19]

11 / 22

Direct attack

Rank syndrome decoding problem:

Given s, find e such that He> = s and |e| 6 r .

Write the dual (using the generator matrix G):

Given c, find e (or m) such that mG + e = c and |e| 6 r .

Or as: Given c, find m such that:

|c−mG| 6 r

|c−
k∑

i=1
(µi

1b1 + · · ·+ µi
mbm)gi | 6 r

|c−
k∑

i=1

m∑
j=1

µi
j(bjgi)| 6 r

MinRank MR(n,mk, r ,M1, . . . ,Mmk)

.

12 / 22

Direct attack

Rank syndrome decoding problem:

Given s, find e such that He> = s and |e| 6 r .

Write the dual (using the generator matrix G):

Given c, find e (or m) such that mG + e = c and |e| 6 r .

Or as: Given c, find m such that:

|c−mG| 6 r

|c−
k∑

i=1
(µi

1b1 + · · ·+ µi
mbm)gi | 6 r

|c−
k∑

i=1

m∑
j=1

µi
j(bjgi)| 6 r

MinRank MR(n,mk, r ,M1, . . . ,Mmk)

.

12 / 22

Direct attack

Rank syndrome decoding problem:

Given s, find e such that He> = s and |e| 6 r .

Write the dual (using the generator matrix G):

Given c, find e (or m) such that mG + e = c and |e| 6 r .

Or as: Given c, find m such that:

|c−mG| 6 r

|c−
k∑

i=1
(µi

1b1 + · · ·+ µi
mbm)gi | 6 r

|c−
k∑

i=1

m∑
j=1

µi
j(bjgi)| 6 r

MinRank MR(n,mk, r ,M1, . . . ,Mmk)

.

12 / 22

Direct attack

Rank syndrome decoding problem:

Given s, find e such that He> = s and |e| 6 r .

Write the dual (using the generator matrix G):

Given c, find e (or m) such that mG + e = c and |e| 6 r .

Or as: Given c, find m such that:

|c−mG| 6 r

|c−
k∑

i=1
(µi

1b1 + · · ·+ µi
mbm)gi | 6 r

|c−
k∑

i=1

m∑
j=1

µi
j(bjgi)| 6 r

MinRank MR(n,mk, r ,M1, . . . ,Mmk)

.

12 / 22

Direct attack

Rank syndrome decoding problem:

Given s, find e such that He> = s and |e| 6 r .

Write the dual (using the generator matrix G):

Given c, find e (or m) such that mG + e = c and |e| 6 r .

Or as: Given c, find m such that:

|c−mG| 6 r

|c−
k∑

i=1
(µi

1b1 + · · ·+ µi
mbm)gi | 6 r

|c−
k∑

i=1

m∑
j=1

µi
j(bjgi)| 6 r

MinRank MR(n,mk, r ,M1, . . . ,Mmk).

12 / 22

And a key recovery attack?

(A closer look at) the syndrome equation for LRPC:

Hsecrete> = s

si =
n∑

j=1
hi,jej =

n∑
j=1

(d∑
l=1

hi,j,lFl

)(r∑
v=1

ej,uEu

)

=
d∑

l=1

r∑
u=1

FlEu

(n∑
j=1

hi,j,lej,u

)
, ∀i ∈ {1, . . . , n − k}.

In matrix form:

s = (F1E1,F1E2 . . . ,FdEr) · Āh,e

Recall: Decoding fails when Dim
(
S
)
< rd

I.e. Āh,e is not of full rank

13 / 22

And a key recovery attack?

(A closer look at) the syndrome equation for LRPC:

Hsecrete> = s

si =
n∑

j=1
hi,jej =

n∑
j=1

(d∑
l=1

hi,j,lFl

)(r∑
v=1

ej,uEu

)

=
d∑

l=1

r∑
u=1

FlEu

(n∑
j=1

hi,j,lej,u

)
, ∀i ∈ {1, . . . , n − k}.

In matrix form:

s = (F1E1,F1E2 . . . ,FdEr) · Āh,e

Recall: Decoding fails when Dim
(
S
)
< rd

I.e. Āh,e is not of full rank

13 / 22

And a key recovery attack?

(A closer look at) the syndrome equation for LRPC:

Hsecrete> = s

si =
n∑

j=1
hi,jej =

n∑
j=1

(d∑
l=1

hi,j,lFl

)(r∑
v=1

ej,uEu

)

=
d∑

l=1

r∑
u=1

FlEu

(n∑
j=1

hi,j,lej,u

)
, ∀i ∈ {1, . . . , n − k}.

In matrix form:

s = (F1E1,F1E2 . . . ,FdEr) · Āh,e

Recall: Decoding fails when Dim
(
S
)
< rd

I.e. Āh,e is not of full rank

13 / 22

And a key recovery attack?

(A closer look at) the syndrome equation for LRPC:

Hsecrete> = s

si =
n∑

j=1
hi,jej =

n∑
j=1

(d∑
l=1

hi,j,lFl

)(r∑
v=1

ej,uEu

)

=
d∑

l=1

r∑
u=1

FlEu

(n∑
j=1

hi,j,lej,u

)
, ∀i ∈ {1, . . . , n − k}.

In matrix form:

s = (F1E1,F1E2 . . . ,FdEr) · Āh,e

Recall: Decoding fails when Dim
(
S
)
< rd

I.e. Āh,e is not of full rank

13 / 22

And a key recovery attack?

(A closer look at) the syndrome equation for LRPC:

Hsecrete> = s

si =
n∑

j=1
hi,jej =

n∑
j=1

(d∑
l=1

hi,j,lFl

)(r∑
v=1

ej,uEu

)

=
d∑

l=1

r∑
u=1

FlEu

(n∑
j=1

hi,j,lej,u

)
, ∀i ∈ {1, . . . , n − k}.

In matrix form:

s = (F1E1,F1E2 . . . ,FdEr) · Āh,e

Recall: Decoding fails when Dim
(
S
)
< rd

I.e. Āh,e is not of full rank

13 / 22

And a key recovery attack?

(A closer look at) the syndrome equation for LRPC:

Hsecrete> = s

si =
n∑

j=1
hi,jej =

n∑
j=1

(d∑
l=1

hi,j,lFl

)(r∑
v=1

ej,uEu

)

=
d∑

l=1

r∑
u=1

FlEu

(n∑
j=1

hi,j,lej,u

)
, ∀i ∈ {1, . . . , n − k}.

In matrix form:

s = (F1E1,F1E2 . . . ,FdEr) · Āh,e

Recall: Decoding fails when Dim
(
S
)
< rd

I.e. Āh,e is not of full rank

13 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1

c1
X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2

c2
X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct

ct X← Decode(ct)
Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct

X← Decode(ct)
Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Reaction attack

m1, e1, c1 =m1G+e1
c1

X← Decode(c1)

m2, e2, c2
c2

X← Decode(c2)

. . .

mt , et , ct
ct X← Decode(ct)

Pls resend!

14 / 22

Our attack

(A closer look at) the syndrome equation for LRPC:

Hsecrete> = s

si =
n∑

j=1
hi,jej =

n∑
j=1

(d∑
l=1

hi,j,lFl

)(r∑
v=1

ej,uEu

)

=
d∑

l=1

r∑
u=1

FlEu

(n∑
j=1

hi,j,lej,u

)
, ∀i ∈ {1, . . . , n − k}.

In matrix form:

s = (F1E1,F1E2 . . . ,FdEr) · Āh,e

Decoding fails when Āh,e is not of full rank

15 / 22

Form a system and try to solve it


ve1 ·

Āe1(h)

= 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

High level attack idea:

1: Collect errors e1, e2, . . . , et from decryption failures
2: repeat
3: h← SolveSystem(ve1 , ve2 , . . . , vet , e1, e2, . . . , et)
4: if h 6= ⊥ then
5: Collect ` messages, errors, ciphertexts (mi , ei , ci)
6: F , success← FindBasis(h, {(mi , ei , ci)}`

i=1)
7: else success← ⊥
8: end if
9: until success

10: H← ReconstructMatrix(h,F)
11: return H of small rank d

16 / 22

Form a system and try to solve it



ve1 · Āe1(h) = 01×n−k

ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

High level attack idea:

1: Collect errors e1, e2, . . . , et from decryption failures
2: repeat
3: h← SolveSystem(ve1 , ve2 , . . . , vet , e1, e2, . . . , et)
4: if h 6= ⊥ then
5: Collect ` messages, errors, ciphertexts (mi , ei , ci)
6: F , success← FindBasis(h, {(mi , ei , ci)}`

i=1)
7: else success← ⊥
8: end if
9: until success

10: H← ReconstructMatrix(h,F)
11: return H of small rank d

16 / 22

Form a system and try to solve it



ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k

. . .

vet · Āet (h) = 01×n−k

High level attack idea:

1: Collect errors e1, e2, . . . , et from decryption failures
2: repeat
3: h← SolveSystem(ve1 , ve2 , . . . , vet , e1, e2, . . . , et)
4: if h 6= ⊥ then
5: Collect ` messages, errors, ciphertexts (mi , ei , ci)
6: F , success← FindBasis(h, {(mi , ei , ci)}`

i=1)
7: else success← ⊥
8: end if
9: until success

10: H← ReconstructMatrix(h,F)
11: return H of small rank d

16 / 22

Form a system and try to solve it



ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

High level attack idea:

1: Collect errors e1, e2, . . . , et from decryption failures
2: repeat
3: h← SolveSystem(ve1 , ve2 , . . . , vet , e1, e2, . . . , et)
4: if h 6= ⊥ then
5: Collect ` messages, errors, ciphertexts (mi , ei , ci)
6: F , success← FindBasis(h, {(mi , ei , ci)}`

i=1)
7: else success← ⊥
8: end if
9: until success

10: H← ReconstructMatrix(h,F)
11: return H of small rank d

16 / 22

Form a system and try to solve it



ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

High level attack idea:

1: Collect errors e1, e2, . . . , et from decryption failures
2: repeat
3: h← SolveSystem(ve1 , ve2 , . . . , vet , e1, e2, . . . , et)
4: if h 6= ⊥ then
5: Collect ` messages, errors, ciphertexts (mi , ei , ci)
6: F , success← FindBasis(h, {(mi , ei , ci)}`

i=1)
7: else success← ⊥
8: end if
9: until success

10: H← ReconstructMatrix(h,F)
11: return H of small rank d

16 / 22

Form a system and try to solve it
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

High level attack idea:

1: Collect errors e1, e2, . . . , et from decryption failures
2: repeat
3: h← SolveSystem(ve1 , ve2 , . . . , vet , e1, e2, . . . , et)
4: if h 6= ⊥ then
5: Collect ` messages, errors, ciphertexts (mi , ei , ci)
6: F , success← FindBasis(h, {(mi , ei , ci)}`

i=1)
7: else success← ⊥
8: end if
9: until success

10: H← ReconstructMatrix(h,F)
11: return H of small rank d

16 / 22

Form a system and try to solve it
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

High level attack idea:

1: Collect errors e1, e2, . . . , et from decryption failures
2: repeat
3: h← SolveSystem(ve1 , ve2 , . . . , vet , e1, e2, . . . , et)
4: if h 6= ⊥ then
5: Collect ` messages, errors, ciphertexts (mi , ei , ci)
6: F , success← FindBasis(h, {(mi , ei , ci)}`

i=1)
7: else success← ⊥
8: end if
9: until success

10: H← ReconstructMatrix(h,F)
11: return H of small rank d

16 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method

I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF
I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei

I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF
I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables

I need to collect t > nd
n−k−rd errors from DF

I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF

I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF
I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF
I ⇒ Problem - too many variables

I Minors method

I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF
I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h

I need to collect t >
(nd

rd)
(n−k

rd) errors from DF for full linearization
I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF
I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kipnis-Shamir method
I n − k equations for each error ei
I typically, nd unknown coefficients in h
I rd new variables from each vei
I bilinear system in trd + nd variables
I need to collect t > nd

n−k−rd errors from DF
I ⇒ Problem - too many variables

I Minors method
I
(n−k

rd
)
equations for each error ei in degree rd

I only the nd unknown coefficients from h
I need to collect t >

(nd
rd)

(n−k
rd) errors from DF for full linearization

I ⇒ Problem - too big final system + t might be too big

17 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kernel method

I n − k equations for each error ei
I nd unknown coefficients in h
I guess vei in kernel of Āet (h)
I ⇒ linear system only in the nd h-variables
I need to collect t > nd

n−k errors from DF

I Probability of guessing vei correctly: Pei = qKei

qrd .

I No way of detecting a larger kernel - effectively dim = 1
I Probability of guessing all ve1 , . . . , vet

Pt = Pt
ei = q−(rd−1)t

18 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kernel method
I n − k equations for each error ei
I nd unknown coefficients in h
I guess vei in kernel of Āet (h)

I ⇒ linear system only in the nd h-variables
I need to collect t > nd

n−k errors from DF

I Probability of guessing vei correctly: Pei = qKei

qrd .

I No way of detecting a larger kernel - effectively dim = 1
I Probability of guessing all ve1 , . . . , vet

Pt = Pt
ei = q−(rd−1)t

18 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kernel method
I n − k equations for each error ei
I nd unknown coefficients in h
I guess vei in kernel of Āet (h)
I ⇒ linear system only in the nd h-variables

I need to collect t > nd
n−k errors from DF

I Probability of guessing vei correctly: Pei = qKei

qrd .

I No way of detecting a larger kernel - effectively dim = 1
I Probability of guessing all ve1 , . . . , vet

Pt = Pt
ei = q−(rd−1)t

18 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kernel method
I n − k equations for each error ei
I nd unknown coefficients in h
I guess vei in kernel of Āet (h)
I ⇒ linear system only in the nd h-variables
I need to collect t > nd

n−k errors from DF

I Probability of guessing vei correctly: Pei = qKei

qrd .

I No way of detecting a larger kernel - effectively dim = 1
I Probability of guessing all ve1 , . . . , vet

Pt = Pt
ei = q−(rd−1)t

18 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kernel method
I n − k equations for each error ei
I nd unknown coefficients in h
I guess vei in kernel of Āet (h)
I ⇒ linear system only in the nd h-variables
I need to collect t > nd

n−k errors from DF

I Probability of guessing vei correctly: Pei = qKei

qrd .

I No way of detecting a larger kernel - effectively dim = 1
I Probability of guessing all ve1 , . . . , vet

Pt = Pt
ei = q−(rd−1)t

18 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kernel method
I n − k equations for each error ei
I nd unknown coefficients in h
I guess vei in kernel of Āet (h)
I ⇒ linear system only in the nd h-variables
I need to collect t > nd

n−k errors from DF

I Probability of guessing vei correctly: Pei = qKei

qrd .

I No way of detecting a larger kernel - effectively dim = 1

I Probability of guessing all ve1 , . . . , vet

Pt = Pt
ei = q−(rd−1)t

18 / 22

How to solve the system?
ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .

vet · Āet (h) = 01×n−k

I Kernel method
I n − k equations for each error ei
I nd unknown coefficients in h
I guess vei in kernel of Āet (h)
I ⇒ linear system only in the nd h-variables
I need to collect t > nd

n−k errors from DF

I Probability of guessing vei correctly: Pei = qKei

qrd .

I No way of detecting a larger kernel - effectively dim = 1
I Probability of guessing all ve1 , . . . , vet

Pt = Pt
ei = q−(rd−1)t

18 / 22

Equivalent keys

An LRPC cryptosystem, with a secret key sk = (H, ·) has an equivalent
key sk′ = (H′, ·′), if sk′ 6= sk and sk′ can be used as a secret key with
equal efficiency as sk. In particular, H′ is of the same rank as H.

I If W ∈ GLn(Fq), sk′ = (WH′, ·′) is an equivalent key
I Decryption failures are invariant with respect to equivalent keys
I We can rewrite H as

H =
d∑

i=1
Ĥi · Fi =

d∑
i=1

[Ĥi1|Ĥi2] · Fi

⇒ H′ = [In−k |Ĥ′12] · F1 +
d∑

i=2
[Ĥ′i1|Ĥ′i2] · Fi is an equivalent key.

I We reduce the number of variables to nd − (n − k).
I Typically, we reduce t by 1

19 / 22

Equivalent keys

An LRPC cryptosystem, with a secret key sk = (H, ·) has an equivalent
key sk′ = (H′, ·′), if sk′ 6= sk and sk′ can be used as a secret key with
equal efficiency as sk. In particular, H′ is of the same rank as H.

I If W ∈ GLn(Fq), sk′ = (WH′, ·′) is an equivalent key

I Decryption failures are invariant with respect to equivalent keys
I We can rewrite H as

H =
d∑

i=1
Ĥi · Fi =

d∑
i=1

[Ĥi1|Ĥi2] · Fi

⇒ H′ = [In−k |Ĥ′12] · F1 +
d∑

i=2
[Ĥ′i1|Ĥ′i2] · Fi is an equivalent key.

I We reduce the number of variables to nd − (n − k).
I Typically, we reduce t by 1

19 / 22

Equivalent keys

An LRPC cryptosystem, with a secret key sk = (H, ·) has an equivalent
key sk′ = (H′, ·′), if sk′ 6= sk and sk′ can be used as a secret key with
equal efficiency as sk. In particular, H′ is of the same rank as H.

I If W ∈ GLn(Fq), sk′ = (WH′, ·′) is an equivalent key
I Decryption failures are invariant with respect to equivalent keys

I We can rewrite H as

H =
d∑

i=1
Ĥi · Fi =

d∑
i=1

[Ĥi1|Ĥi2] · Fi

⇒ H′ = [In−k |Ĥ′12] · F1 +
d∑

i=2
[Ĥ′i1|Ĥ′i2] · Fi is an equivalent key.

I We reduce the number of variables to nd − (n − k).
I Typically, we reduce t by 1

19 / 22

Equivalent keys

An LRPC cryptosystem, with a secret key sk = (H, ·) has an equivalent
key sk′ = (H′, ·′), if sk′ 6= sk and sk′ can be used as a secret key with
equal efficiency as sk. In particular, H′ is of the same rank as H.

I If W ∈ GLn(Fq), sk′ = (WH′, ·′) is an equivalent key
I Decryption failures are invariant with respect to equivalent keys
I We can rewrite H as

H =
d∑

i=1
Ĥi · Fi =

d∑
i=1

[Ĥi1|Ĥi2] · Fi

⇒ H′ = [In−k |Ĥ′12] · F1 +
d∑

i=2
[Ĥ′i1|Ĥ′i2] · Fi is an equivalent key.

I We reduce the number of variables to nd − (n − k).
I Typically, we reduce t by 1

19 / 22

Equivalent keys

An LRPC cryptosystem, with a secret key sk = (H, ·) has an equivalent
key sk′ = (H′, ·′), if sk′ 6= sk and sk′ can be used as a secret key with
equal efficiency as sk. In particular, H′ is of the same rank as H.

I If W ∈ GLn(Fq), sk′ = (WH′, ·′) is an equivalent key
I Decryption failures are invariant with respect to equivalent keys
I We can rewrite H as

H =
d∑

i=1
Ĥi · Fi =

d∑
i=1

[Ĥi1|Ĥi2] · Fi

⇒ H′ = [In−k |Ĥ′12] · F1 +
d∑

i=2
[Ĥ′i1|Ĥ′i2] · Fi is an equivalent key.

I We reduce the number of variables to nd − (n − k).
I Typically, we reduce t by 1

19 / 22

Case study - McNie

I We evaluated the attack on the 1st round submission parameters

n k d r q m Dec.
Failure

Security
(bits)

Attack
(Classical)

Attack
(Quantum)

t

93 62 3 5 2 37 2−17 128 128.8 82.8 8
105 70 3 5 2 37 2−20 128 139.7 83.7 8
111 74 3 7 2 41 2−17 192 188 108 8
123 82 3 7 2 41 2−20 192 189 109 8
111 74 3 7 2 59 2−17 256 188 108 8
141 94 3 9 2 47 2−20 256 238 134 8

I Better attacks exist -
We do not take advantage of any additional structure of McNie

I We do not take full advantage of the high decryption failure

20 / 22

Case study - McNie

I We evaluated the attack on the 1st round submission parameters

n k d r q m Dec.
Failure

Security
(bits)

Attack
(Classical)

Attack
(Quantum)

t

93 62 3 5 2 37 2−17 128 128.8 82.8 8
105 70 3 5 2 37 2−20 128 139.7 83.7 8
111 74 3 7 2 41 2−17 192 188 108 8
123 82 3 7 2 41 2−20 192 189 109 8
111 74 3 7 2 59 2−17 256 188 108 8
141 94 3 9 2 47 2−20 256 238 134 8

I Better attacks exist -
We do not take advantage of any additional structure of McNie

I We do not take full advantage of the high decryption failure

20 / 22

Final words

I Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski ’16

I A concurent work in the Rank metric - Aragon, Gaborit ’19
I similar in nature to Guo et al.’s, but not efficient

Differences in our attack
I We need only a handful of observed decryption failures

I Is there a trade-off?
I We don’t rely on any statistical tests
I We don’t rely on any specific decoder
I The attack works even in a CCA setting

I We assume “randomly generated” errors
I Plenty of room for improvement!

21 / 22

Final words

I Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski ’16
I A concurent work in the Rank metric - Aragon, Gaborit ’19

I similar in nature to Guo et al.’s, but not efficient

Differences in our attack
I We need only a handful of observed decryption failures

I Is there a trade-off?
I We don’t rely on any statistical tests
I We don’t rely on any specific decoder
I The attack works even in a CCA setting

I We assume “randomly generated” errors
I Plenty of room for improvement!

21 / 22

Final words

I Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski ’16
I A concurent work in the Rank metric - Aragon, Gaborit ’19

I similar in nature to Guo et al.’s, but not efficient

Differences in our attack
I We need only a handful of observed decryption failures

I Is there a trade-off?

I We don’t rely on any statistical tests
I We don’t rely on any specific decoder
I The attack works even in a CCA setting

I We assume “randomly generated” errors
I Plenty of room for improvement!

21 / 22

Final words

I Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski ’16
I A concurent work in the Rank metric - Aragon, Gaborit ’19

I similar in nature to Guo et al.’s, but not efficient

Differences in our attack
I We need only a handful of observed decryption failures

I Is there a trade-off?
I We don’t rely on any statistical tests

I We don’t rely on any specific decoder
I The attack works even in a CCA setting

I We assume “randomly generated” errors
I Plenty of room for improvement!

21 / 22

Final words

I Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski ’16
I A concurent work in the Rank metric - Aragon, Gaborit ’19

I similar in nature to Guo et al.’s, but not efficient

Differences in our attack
I We need only a handful of observed decryption failures

I Is there a trade-off?
I We don’t rely on any statistical tests
I We don’t rely on any specific decoder

I The attack works even in a CCA setting
I We assume “randomly generated” errors

I Plenty of room for improvement!

21 / 22

Final words

I Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski ’16
I A concurent work in the Rank metric - Aragon, Gaborit ’19

I similar in nature to Guo et al.’s, but not efficient

Differences in our attack
I We need only a handful of observed decryption failures

I Is there a trade-off?
I We don’t rely on any statistical tests
I We don’t rely on any specific decoder
I The attack works even in a CCA setting

I We assume “randomly generated” errors

I Plenty of room for improvement!

21 / 22

Final words

I Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski ’16
I A concurent work in the Rank metric - Aragon, Gaborit ’19

I similar in nature to Guo et al.’s, but not efficient

Differences in our attack
I We need only a handful of observed decryption failures

I Is there a trade-off?
I We don’t rely on any statistical tests
I We don’t rely on any specific decoder
I The attack works even in a CCA setting

I We assume “randomly generated” errors
I Plenty of room for improvement!

21 / 22

Thank you for listening!

22 / 22

