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Ongoing NIST competition for Post Quantum Cryptography

» Second round M Q-based candidates
> LUOV
> Rainbow
> GeMSS
> MQDSS
» Second round Rank based candidates

> Rollo (merge of LAKE, LOCKER, Ouroboros-R)
> RQC

> Best attacks - guessing + solving systems of equations
» Except for MQDSS and LUQV, all are instances of a MinRank problem

» Decoding in the rank metric is essentially structured MinRank

» In this talk: Using MinRank to mount
Decryption failure attack for Rank based cryptosystems
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MinRank MR(n, m,r, My, ..., My,)

Input: n,m,r €N, and My, ..., M, € M,(F,).
Question: Find — if any — a nonzero m-tuple (Ay,...,A\p) € F' st

Rank (zm: )\,’ M,) <r.

i=1
[Courtois '01], [Buss & Shallit '99]
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MinRank MR(n, m,r, My, ..., My,)

Input: n,m,r €N, and My, ..., M, € M,(F,).
Question: Find — if any — a nonzero m-tuple (Ay,...,A\p) € F' st

Rank (zm: )\,’ M,) <r.

i=1
[Courtois '01], [Buss & Shallit '99]

» Solving MinRank

» Kernel method [Goubin-Courtois’00]
> Kipnis-Shamir method [Kipnis-Shamir'99]
> Minors method [Faugere et al.08]
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Solving MinRank - Kernel method

Rank <Z)\,-M,-> <r < Dim <Ker (ZA,M,-)) >n—k

i=1 i=1
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Solving MinRank - Kernel method

Rank <Z)\,-M,-> <r < Dim (Ker (Z)\, M,-)) >n—k

i=1 i=1

> Guess [] vectors v; € Ker (37, A M;)

» Form linear equations in the \; variables

Vi - <i Ai Mi) = 01xn.
i=1

> Complexity: O (q/71"m?)
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Solving MinRank - Kipnis-Shamir modeling

Rank (Z i M,-) <r e 3xD . x) e Ker (Z i M,-)

i=1 i=1

T

1 X m
: S E (Z A M,-> = Opxp-
X Xr(,,,,)

1 i=1

n(n— r) quadratic (bilinear) equations in r (n — r) + m variables
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Solving MinRank - Kipnis-Shamir modeling

Rank (Z i M,-) <r e 3xD . x) e Ker (Z i M,-)

i=1 i=1

LW

1 X m
. (Z/\l M/) :Onxn-
X(nfr) B XSnfr)

1 i=1

n(n— r) quadratic (bilinear) equations in r (n — r) + m variables

> Relinearization [Kipnis & Shamir '99]
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Solving MinRank - Kipnis-Shamir modeling

Rank (Z i M,-) <r e 3xD . x) e Ker (Z i M,-)

i=1 i=1
1 (1)
1 e X

1 X m
. (Z/\l M/) :Onxn-
(n—r)

1 Xl(nfr) i=1

n(n— r) quadratic (bilinear) equations in r (n — r) + m variables

> Relinearization [Kipnis & Shamir '99]
> Grobner bases [Faugére & Levy-dit-Vehel & Perret '08]
> Complexity: (’)(("er“?’) ) [Faugere '02]
dreg < min(nx, ny)+1,

for bilinear system in X, Y blocks of variables of sizes nx, ny.

5/ 22



Solving MinRank - Minors modeling

m k
Rank (Z Ai I\/I,-) < r < all minors of size r + 1 of <Z Ai M,—) vanish.

i=1 i=1

n\? . . .
equations in m variables
r+1

> [Faugere & Levy-dit-Vehel & Perret '08],
[Faugere & Safey El Din & Spaenlehauer '10]
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Solving MinRank - Minors modeling

m k
Rank (Z Ai I\/I,-) < r < all minors of size r + 1 of <Z Ai M,—) vanish.

i=1 i=1

n\? . . .
equations in m variables
r+1

> [Faugere & Levy-dit-Vehel & Perret '08],
[Faugere & Safey El Din & Spaenlehauer '10]

» Less variables than the Kipnis-Shamir modeling
but equations of degree r + 1.

> Complexity: O ((,7,)") if fully linearizable [Faugere '02]

» Can be more efficient than Kipnis-Shamir method
(depends on parameters)
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Rank metric essentials
» B={Bi, - ,Bp} - basis of Fgn over Fg

VEFgm < v = Z]:i(V)Bi

i=1
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Rank metric essentials
» B={Bi, - ,Bp} - basis of Fgn over Fg

VEFgm < v = Z]:i(V)Bi

i=1

Fivi)  Fulve) - Fi(va)
veF, =[v, -, v LV — ]:2(:V1) .7:2(:V2) fz(:vn) e T,
]:ml(vl) ]:m.(V2) ]'—ml(vn)

> Rank distance between a,b € Fy.,
rd(a,b) = |A — B|.
» Support of v € V,, - (v) - the subspace generated by vy, -, v,
> lIsometry: If W e GL,(F)
b = [b- WI.

722



LRPC codes

A Low-Rank Parity-Check (LRPC) code C over Fgm of length n, dimension
k and rank d is described by an (n — k) x n parity-check matrix

H = {h;} e F& =,

» Each coefficient h;j can be written as

d

hig =D higiFi, hijs € Fo,
=1

each F; € Fgm, and F = (F1, F5,- -+ , Fg) is a Fy subspace of Fgn.
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Decoding of LRPC codes

Let s = (s1,...,Sn—k) € Fg;k be the syndrome of e, i.e. He =s.

Decoding: Recover e from the knowledge of s.
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Decoding of LRPC codes

Let s = (s1,...,50-k) € IFZ,Z" be the syndrome of e, i.e. He =s.
Decoding: Recover e from the knowledge of s.

Crucial facts:

> |fh,‘J€F=<F1,F2,~--,Fd> ande€E=<E1,E2,-~-,E,> then

S € <F1E1, FiEa, ..., FdEr>
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Decoding of LRPC codes

Let s = (s1,...,50-k) € IFZ,Z" be the syndrome of e, i.e. He =s.
Decoding: Recover e from the knowledge of s.

Crucial facts:

> |fh,‘J€F=<F1,F2,~--,Fd> ande€E=<E1,E2,-~-,E,> then

S € <F1E1, FiEa, ..., FdEr>

» Assume S = (s1,5,...,5,—k) = (F1E1, F1Ea, ..., F4E,) then:
1. Set S; = F;'.S. Then

Si=F (. FE,FE,. . ,FE.)=>E=(E,E, - ,E)CS

2. Find E:51ﬂ52ﬂ~~-05d
3. Find e by solving He™ =s
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Decoding of LRPC codes

Decoding failures:

1. When Dim((EF)) < rd: this happens with probability P, = qL

m—rd

2. When E # ﬂ;jzl Si: when m > rd + 8, this happens with probability P, < 2730
3. When Dim(S) < rd this happens with probability P; = q,%

» In practice usually Py, P, < Ps.
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LRPC cryptosystems

Basically any cryptosystem that
» uses LRPC codes (low rank of Hgecret)
» uses RHgecer = H to hide the secret Hgecrer

» relies on the Rank syndrome decoding problem:

Find e such that He” =s and |e| < r.
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LRPC cryptosystems

Basically any cryptosystem that
» uses LRPC codes (low rank of Hgecret)
» uses RHgecer = H to hide the secret Hgecrer

» relies on the Rank syndrome decoding problem:

Find e such that He” =s and |e| < r.

Some examples:
> LRPC cryptosystem [Gaborit et al13]
> McNie [Kim et al.'17] (NIST 1st round candidate)

» ROLLO (Rank-Ouroboros, LAKE and LOCKER) [Aguilar Melchor et al. '17]
(NIST 2nd round candidate)

v

Durandal [Aragon et al.'19]
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Direct attack

Rank syndrome decoding problem:

Given s, find e such that He” =s and |e| < r.
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Direct attack

Rank syndrome decoding problem:

Given s, find e such that He” =s and |e| < r.

Write the dual (using the generator matrix G):
Given c, find e (or m) such that mG + e = c and |e|
Or as: Given c, find m such that:
lc—mG| < r

k

e = > (uiby+ -+ ptinbm)gil < r
i=1

k m
le= Y uibe) <r

i=1 j=1

MinRank MR(n, mk,r, My, ...

<r.

9 Mmk)-
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And a key recovery attack?
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T
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n n d "
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And a key recovery attack?

(A closer look at) the syndrome equation for LRPC:

T
Hsecrei.“e =S

n n d "
si= Z hije = Z <Z hiJJF’) (Z ef»”E“>
=1 j=1 \I=1 v=1

d r

:ZZFIEU (ih;‘j‘,ejyu) R ViE{lw..,n—k}.
j=1

=1 u=1
In matrix form:
s=(FE, FE ... ,FyE) - Ape
Recall: Decoding fails when Dim(S) < rd

l.e. Ah,e is not of full rank

13 /22
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Reaction attack
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mp, ez, C2
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Reaction attack

C1

mi,e;, c;=m;G+e; v < Decode(c1)
C2
m2, ez, C2 v 4= Decode(c3)
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Reaction attack
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C1
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Ct

Pls resend!
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Our attack

(A closer look at) the syndrome equation for LRPC:

T
Hsecrete =S

S; = Z h,-yjej = Z (Z h,J /F[) (Z ejquu>
j=1 v=1

j=1

d r
*ZZFI U(Zhljle/u>, Vle{l,,nfk}
=1 u=1
In matrix form:

S = (FlEl7 FlEg ceey FdE,) . Ah,e

Decoding fails when Ay, . is not of full rank
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Ve, - Ae1(h) = 01xn—k
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e1(h) = 01xn«

Ve, - A
Ve, ° Aez(h) = 01—k

Ve, Aet(h) = O1nx
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Form a system and try to solve it
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Form a system and try to solve it

(h) = l')1><n—l<

Ve, ° 661
Ve, - Aez(h) = 01><n—k

Ve, ° Aet(h) = 01xn—«k

High level attack idea:

10:
11:

1
2
3
4:
5:
6.
7
8
9

: Collect errors eq, ey, ..., e, from decryption failures
: repeat
h < SolveSystem(Ve,, Ve,, - - -, Ve, €1, €2, . .., €)
if h # 1 then

Collect ¢ messages, errors, ciphertexts (m;,e;,c;)
F,success < FindBasis(h, {(m;,e;, ¢;)}¢_,)

else success <+ L

end if

. until success

H  ReconstructMatrix(h, F)

return H of small rank d
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How to solve the system?

é() 1><nk
A() 01><nk

Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method

17 /22



How to solve the system?

Ve, - ée1(h) = 01xn—k
Ve, - Aez(h) = 01><n—k
Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method
» n — k equations for each error e;
> typically, nd unknown coefficients in h
» rd new variables from each v,

17 /22



How to solve the system?

Ve, - ée1(h) = 01xn—k
Ve, - Aez(h) = 01><n—k
Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method
» n — k equations for each error e;
> typically, nd unknown coefficients in h
» rd new variables from each v,
» bilinear system in trd + nd variables

17 /22



How to solve the system?

e1(h) - 0l><n—/<

Ve, - A
Ve, - Aez(h) = 01><n—k

Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method

>

vvyyvyy

n — k equations for each error e;

typically, nd unknown coefficients in h

rd new variables from each v,

bilinear system in trd + nd variables

need to collect t > #‘ird errors from DF

17 /22



How to solve the system?

e1(h) - 0l><n—/<

Ve, - A
Ve, - Aez(h) = 01><n—k

Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method

>

>
>
>
>
>

n — k equations for each error e;

typically, nd unknown coefficients in h

rd new variables from each v,

bilinear system in trd + nd variables

need to collect t > #‘ird errors from DF

= Problem - too many variables

17 /22



How to solve the system?

e1(h) = 0l><n—/<

Ve, - A
Ve, - Aez(h) = 01><n—k

Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method

>

>
>
>
>
>

n — k equations for each error e;

typically, nd unknown coefficients in h

rd new variables from each v,

bilinear system in trd + nd variables

need to collect t > #‘ird errors from DF

= Problem - too many variables

» Minors method

17 /22



How to solve the system?

Ve, - ée1(h) = 01xn—k
Ve, - Aez(h) = 01><n—k
Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method
» n — k equations for each error e;
> typically, nd unknown coefficients in h
» rd new variables from each v,
» bilinear system in trd + nd variables
» need to collect t > #‘ird errors from DF
>

= Problem - too many variables

» Minors method

> ("r_dk) equations for each error e; in degree rd

» only the nd unknown coefficients from h

17 /22



How to solve the system?

e1(h) = 0l><n—/<

Ve, - A
Ve, - Aez(h) = 01><n—k

Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method

>

>
>
>
>
>
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» Minors method

>
>

(”r_dk) equations for each error e; in degree rd
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How to solve the system?

Ve, - ée1(h) = 01xn—k
Ve, - Aez(h) = 01><n—k
Ve, ° Aet(h) = 01xn—«k

» Kipnis-Shamir method

» n — k equations for each error e;

> typically, nd unknown coefficients in h

» rd new variables from each v,

» bilinear system in trd + nd variables

» need to collect t > #‘ird errors from DF
>

= Problem - too many variables

» Minors method
> ("r_dk) equations for each error e; in degree rd
» only the nd unknown coefficients from h

nd

» need to collect t > (fk) errors from DF for full linearization

rd
» = Problem - too big final system + t might be too big
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How to solve the system?
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How to solve the system?

e1(h) - le,,,k

Ve, - A
Ve, * Aez(h) = 01xn—k

Ve, Aet(h) = 01><nfk

» Kernel method

>

vvyvy

v

n — k equations for each error e;

nd unknown coefficients in h

guess Ve, in kernel of A, (h)

= linear system only in the nd h-variables

need to collect t > n’f’k errors from DF

Ke;

Probability of guessing ve, correctly: Pe, = d

No way of detecting a larger kernel - effectively dim =1
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How to solve the system?

e1(h) - le,,,k

A
Aez(h) = 01><n—l<

Ve, Aet(h) = 01><nfk

» Kernel method

>

vV VYVvVYVYY

vy

n — k equations for each error e;

nd unknown coefficients in h

guess Ve, in kernel of A, (h)

= linear system onIy in the nd h-variables

K

Probability of guessing ve, correctly: Pe, = 27
No way of detecting a larger kernel - effectively dim =1

Probability of guessing all ve,, ..., Ve,
Pt Pt _ qf(rdfl)t

18 / 22



Equivalent keys

An LRPC cryptosystem, with a secret key sk = (H, ) has an equivalent
key sk’ = (H’, "), if sk’ # sk and sk’ can be used as a secret key with
equal efficiency as sk. In particular, H’ is of the same rank as H.
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key sk’ = (H’, "), if sk’ # sk and sk’ can be used as a secret key with
equal efficiency as sk. In particular, H’ is of the same rank as H.

> If W e GL,(Fy), sk’ = (WH’, ") is an equivalent key
» Decryption failures are invariant with respect to equivalent keys
» We can rewrite H as

d d
H=> H;-F=> [HalHy] F
i=1

i i=1

= [l kAL - A1+ Z [A},|A’,] - F; is an equivalent key.

19 /22



Equivalent keys

An LRPC cryptosystem, with a secret key sk = (H, ) has an equivalent
key sk’ = (H’, "), if sk’ # sk and sk’ can be used as a secret key with
equal efficiency as sk. In particular, H’ is of the same rank as H.

v

If W € GL,(Fy), sk’ = (WH’, ") is an equivalent key

v

Decryption failures are invariant with respect to equivalent keys

v

We can rewrite H as

d d
H=> H;-F=> [HalHy] F
i=1

i i=1

=1, |AL] - Fi + Z [A},|A’,] - F; is an equivalent key.

v

We reduce the number of variables to nd — (n — k).

v

Typically, we reduce t by 1
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Case study - McNie

» We evaluated the attack on the 1st round submission parameters

Dec. | Security || Attack Attack

n k d r q m Failure (bits) (Classical) | (Quantum) t
93 | 62 3 5 2 | 37 2~ 17 128 128.8 82.8 8
105 | 70 3 5 2 |37 2-20 128 139.7 83.7 8
111 | 74 | 3 7 2 |41 2-17 192 188 108 8
123 | 82 3 7 2 |41 2-20 192 189 109 8
11| 74 | 3 | 7|2 |59] 277 256 188 108 8
141 94 | 3 9 2 | 47 2-20 256 238 134 8
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» We evaluated the attack on the 1st round submission parameters

Dec. | Security || Attack Attack

n k d r q m Failure (bits) (Classical) | (Quantum) t
93 | 62 3 5 2 | 37 2~ 17 128 128.8 82.8 8
105 | 70 3 5 2 |37 2-20 128 139.7 83.7 8
111 | 74 | 3 7 2 |41 2-17 192 188 108 8
123 | 82 3 7 2 |41 2-20 192 189 109 8
11| 74 | 3 | 7|2 |59] 277 256 188 108 8
141 94 | 3 9 2 | 47 2-20 256 238 134 8

> Better attacks exist -
We do not take advantage of any additional structure of McNie

» We do not take full advantage of the high decryption failure
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» Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski '16
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» Reaction attacks in the Hamming metric - Guo, Johansson, Stankovski '16
» A concurent work in the Rank metric - Aragon, Gaborit '19
» similar in nature to Guo et al’s, but not efficient
Differences in our attack
» We need only a handful of observed decryption failures
» Is there a trade-off?
» We don’t rely on any statistical tests
» We don’t rely on any specific decoder
» The attack works even in a CCA setting
> We assume “randomly generated” errors

» Plenty of room for improvement!
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Thank you for listening!
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