Quantum computers vs Digital security
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Dear Bob, | miss you...
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Public key cryptography

Problem: Too costly! But, they can communicate only the key,

and use symmetric crypto afterwards! iCIS | Digital Security
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Alice and Bob have more problems than just secrecy...
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Digital signatures - A Swiss army knife in cryptography
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Today’s cryptography in use?

« Based on computationally hard problems _
(x ORy OR z) AND (x ORYy OR z) AND

(x ORy OR 2) AND (x OR y OR Z) AND

(x ORy OR z) AND (x ORY OR 2)

BRUTE-FORCE DYNAMIC
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Today’s cryptography in use? Hard
0(2™")

» Based on computationally hard problems
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Today’s cryptography in use?

* Algorithms based on

Integer factorization

Given integer N find its prime factors

Discrete logarithm over different groups

Given generator g € G and any y € G,

find x such that g* = vy

65-:‘;5 H%

—— WHAT?

I'M FACTORING Y&
THE TIME. _

I HAVE NOTHING TO DO, SO IM TRYING
TO CALCULATE THE PRIME FACTORS OF THE
TIME EME{ MINUTE BEFORE IT CHANGES,

ITWASEASY WHIN I\
STARTED AT 1:00, BUT
WITH EACH HOUR THE
NUMBER GETS BIGGER =2

J
1 WONDER HOW
LONG I CAN KEEP UP

L_’ \
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BOTH:

Subexponential complexity

> Polynomial
< Exponential
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The origins ...

Probabilistic
Turing
Machine

Deutsch ‘85

A computing device
based on the principles of
Quantum mechanics

Universal
Quantum
Computer
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The origins ...

Probabilistic
Turing
Machine
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The origins ...

Probabilistic
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THE GOLDEN AGE OF QUANTUM COMPUTING IS UPON US
(ONCE WE SOLVE THESE TINY PROBLEMS)

LITERALLY TINY. AS IBM ANNOUNCES A BIG ADVANCE, MANY CHALLENGES REMAIN
IN BUILDING A COMPUTER THAT TAKES ADVANTAGE OF QUANTUM WEIRDNESS.
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(ONCE WE SOLVE THESE TINY PROBLEMS)

LITERALLY TINY. AS IBM ANNOUNCES A BIG ADVANCE, MANY CHALLENGES REMAIN
IN BUILDING A COMPUTER THAT TAKES ADVANTAGE OF QUANTUM WEIRDNESS.

IEEE

SPECTRUM

“With our recent four-qubit network, we built a system that allows us to
detect both types of quantum errors,” says Jerry Chow, manager of

¢ experimental quantum computing at IBM’s Thomas J. Watson Research
Center, in Yorktown Heights, N.Y. Chow, who, along with his IBM
colleagues detailed their experiments in the 29 April issue of the
¥ journal Nature Communications, says, g¥OESERIES IR D 0010 H) &
phase errors” that

The IBM system consists of four quantum bits, or qubits, arranged in a 2-by-2
configuration on a chip measuring about 1.6 square centimeters (0.25 square

iCIS | Digital Security
Radboud University




» B® [mm N0 ﬁ E !,,,I Search Extremetech
h'lﬁ ‘AN ™ M e

Computing Phones Cars Gaming Science Extreme Deep Dives Deals

HOME COMPUTING

IBM is making its quantum computer API available to the public

By Jessica Hall on March 6, 2017 at 9:22 am

iCIS | Digital Security
Radboud University




: . =
| |
SR\ ! ]

i 1I’ll|l iy
! (M0 i

.o H I -
w = b f | | ! i 1}
¥ | | [ P b i || sl i -
£ X L] r | |
MTH - o a e | L T |
| 1 - ! =1l | | e
. - MIE | L e
— W | § | 4y |
21 i I i
¥ L]
T [ I_I |
|

‘A |

wn B

FUturism NEWS FEATURES VIDEOS

IBM Just Announced a 50-Qubit > o K

Quantum Computer

Earlier today, IBM announced a 50-quantum bit (qubit) quantum computer, the largest in the industry so far.
As revolutionary as this development is, IBM's 50-qubit machine is still far from a universal quantum

computer.
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Technology

Microsoft Takes Path Less Traveled to
Build a Quantum Computer

Software giant releases a quantum programming language and simulator, but
still has no working computer

=' Microsoft Microsoft 365 Azure Office 365 Dynamics 365 saL Windows 10 More ~

By Jeremy Kahn and Dina Bass
December 11, 2017, 2:45 PM GMT+1

Q uantum Why Microsoft Team Technology

Get started with quantum development

The Microsoft Quantum Development Kit is the fastest path to quantum development.

Download for Windows > Download for macOS and Linux >

Powering a new generation of development

A new quantum-focused programming language Advanced code optimization in a simulated
environment
The first of its kind, G# is a brand-new quantum-focused programming Set breakpoints, step into the Q# code, debug line-by-line, and estimate Dewv:
language with native type, operators, and other abstraction. Q# features the real-world costs to run your solution. Simulate quantum solutions blc
rich integration with Visual Studio and VS Code and interoperability with requiring up to 30 qubits with a lacal simulator, or use the Azure s¢
the Python programming language. The enterprise-grade development simulator for large-scale quantum solutions requiring more than 40 58
tools give you the fastest path to quantum programming on Windows, qubits.

macOs, or Linux.

E{)igital Security
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Quantum Projects

COMPANY TECHNOLOGY WHY IT COULD FAIL

IEM Makes qubits from The error rate of the qubits is too high to operate them
superconducting metal together in auseful computer.
circuits.

Microsoft Building a new Kind of The existence of the subatomic particle usedin this qubit
“topoloagical qubit” that remains unproven. Evenifitis real, thereisn't yet evidence it
in theory should be more can be controlled.
reliable than others.

Alcatel-Lucent  Inspired by Microsoft's Same as above,

research, itis pursuing a
topological qubit based on
a different material.

D-Wave Sells computers based on It's not clear that its chips harness quantum effects. Even

Systems superconducting chips if they do, their design is limited to solving a narrow set of

with 512 qubits. mathematical problems.

Google After experimenting with Same as above. Plus, Google is trying to adapt technology

D-Wave's computers since
2009, it recently opened alab
to build chips ike D-Wave's,

first developed for a different kind of qubit to the kind used by
D-Wave.
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A peak inside

A Quantum
COMPUTER

(...a thought experiment...)
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Qubit (short of quantum bit)

Bit — the unit of
classical information

Oor1
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Qubit (short of quantum bit)

Bit — the unit of
classical information

Oor1

Qubit — the unit of
VS quantum information

A combination of

0 and 1

State of a qubit: | [1))

al0) + 3[1)

a, 3 € C

/’

A vector in two dimensional complex space

L/
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Qubit (short of quantum bit)

Bit — the unit of Qubit — the unit of
classical information VS quantum information

A combination of

Oor1 0 and 1

State of a qubit: W)) = ()5‘0) + [‘3‘1) a, e C

Measurement

. non-deterministic
‘¢> collapse < R ‘05‘2 4 ‘ 5‘2 A’

iCIS | Digital Security [BE==H
Radboud University B




Qubit (short of quantum bit)

Bit — the unit of Qubit — the unit of
classical information VS quantum information

A combination of
O or 1 0 and 1

Caution: a qubit holds

y 1 bit of information !!!

State of a qubit:|[1)) =

Measurement

2
lae
=

H
2
)

... NoN-deterministic

1y cdapse of? + |5 =1

=
=
|
=
N
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Quantum gates

1) — - Unitary operator UUt = UtU =1
W’Z) ] —//

: AN A (D)
|¢n> ] —
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Quantum gates

1) — - Unitary operator UUt = UtU =1
W’Z) ] —//

; v 1.
|¢n> ] —

One qubit gates

a|0) + B1) 7—5|0>+a|1>
al0) + G 1) 2 a|0) — 1)
al0) + 4]1) E o021 | glo-ly
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Quantum gates

1) — - Unitary operator UUt = UtU =1
W’Z) ] —//

: AN A (D)
|¢n> ] —

One qubit gates Two qubit gate

a|0) + 81) 7— 310) + a|1) controlled-NOT
al0) + G [1) 7 a0y — G|1) -A4) l | A)
o |0) + B]1) E o 0D 4 5 7D |B) —&—— |B®© A)
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Quantum gates

1) — — Unitary Operator
N e

[12) -

A 1) /

All quantum transformations

(1)) —— U are reversible
(No destruction of information as in classical gates)

One qubit gates Two qubit gate
a|0) + 81) 7— 310) + a|1) controlled-NOT
al0) 4+ 61) 2 a|0) — 3]1) 4) l |[A)
o [0) + B1) " o 04D 4 gl0-I0 B) —&— |B® A)
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What kind of computations are possible using quantum circuits?
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What kind of computations are possible using quantum circuits?

« Classical computations?

a ¢ a

b . b

C Y, c® ab
Toffoli gate
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What kind of computations are possible using quantum circuits?

« Classical computations?

a @

b ®

C >
Toffoli gate

b

c D ab

b ' b

| —&—— 1@ ab = —(ab)

Simulate NAND gate
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What kind of computations are possible using quantum circuits?

« Classical computations?

a a 4 * a
b ’ b = b * b
c a cd ab 1 D 1 & ab = —(ab)
Toffoli gate
Simulate NAND gate
- 0)
0 A<

1)

With probability 1/2
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What kind of computations are possible using quantum circuits?

« Classical computations?

a o a a * a
b ® b ” b * b

c a cd ab 1 D 1 & ab = —(ab)
Toffoli gate

Simulate NAND gate

- 0)
10) 4@ ~~ < ‘ > = Simulate fair coin toss
1

With probability 1/2
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What kind of computations are possible using quantum circuits?

Efficient simulation of a
classical non-deterministic computer

« Classical computations?

b—8—b A
c a cd ab 1 D 1 & ab = —(ab)

Toffoli gate

Simulate NAND gate

e 0)
0) 4@ 7~ < R - |Simulate fair coin t033/
1

With probability 1/2
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What kind of computations are possible using quantum circuits?

Efficient simulation of a
. Classical computations? classical non-deterministic computer

“7 Why bother exploit quantum effects for \

classical computations?

L

b I D
C c P ab 1 Sv, 16 ab= _1([15)

WL/

Toffoli gate

Simulate NAND gate

e 0)
0) 4@ 7~ < R - |Simulate fair coin t033/
1

With probability 1/2
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What kind of computations are possible using quantum circuits?

Efficient simulation of a
. Classical computations? classical non-deterministic computer

“7 Why bother exploit quantum effects for \

classical computations?
b T b v

Mass production of silicone chips D ab = —(ab)
almost to perfection

Vs ND gate

0) —f No stable system of a handful of qubits

ormrrraravo—anr COIN {0SS
Sy N -

With probability 1/2
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Quantum Parallelism!
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Quantum Parallelism!

“Evaluate” f(x) for many different values of x simultaneously!

0)+[1)
V2

0) —v  ydf(z) | —

0,0) — 10, £(0))
11,0) — [1, £ (1))
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Quantum Parallelism!

“Evaluate” f(x) for many different values of x simultaneously!

|0>\-/F_|1> . ol
2
Ut
0)—v  yaf) | — 1070 +]LF(D)
V2
N\

10,0) — |0, £(0)) Single circuit for “simultaneous
11,0) — |1, f(1)) evaluation” of both £(0) and f(1)
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Quantum Parallelism!

“Evaluate” f(x) for many different values of x simultaneously!

|0>\-/F_|1> . ol
2
Ut
0)—v  yaf) | — 1070 +]LF(D)
V2
N\

10,0) — |0, £(0)) Single circuit for “simultaneous
11,0) — |1, f(1)) evaluation” of both £(0) and f(1)

But wait a minute!

Measurement will necessarily destroy the state,
yielding only one of £(0), f(1) !l
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Quantum Parallelism!

“Evaluate” f(x) for many different values of x simultaneously!

0)+11) How to extract more useful information
V2 v ' T from a superposition state?
f
‘O) — Y yDf(z) — 0, £(0)) + |1, £(1))
V2
AN

10,0) — |0, £(0)) Single circuit for “simultaneous
11,0) — |1, f(1)) evaluation” of both £(0) and f(1)

But wait a minute!

Measurement will necessarily destroy the state,
yielding only one of £(0), f(1) !l
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Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!
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Quantum Parallelism + Quantum Interference!

Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!

First algorithm to illustrate the power of
Quantum computation!
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Quantum algorithms breakthroughs

Deutsch’s

algorithm
demonstrates task quantum
computer can perform in

Bernstein-Vazirani

algorithm
demonstrates a
superpolynomial separation
between probabilistic and

one shot that classically
takes two shots.

M992 1994

- 8
198_3i

quantum algorithms.

1998 ‘ 2001

Deutsch-Jozsa

algorithm
Demonstrates an
exponential separation
between classical
deterministic and
quantum algorithms

207
8 8 & & & 4
N99 200 2003 [2006 | 2009
Simon’s
algorithm
Demonstrates an

exponential separation
between classical
probabilistic and
quantum algorithms

2005 ' 2007

-

2012 | 2014 |

0
b & & - —)
2011 12013 | 2015
]
o
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Quantum algorithms breakthroughs

Bernstein-Vazirani

algorithm
demonstrates a
superpolynomial separation
between probabilistic and |

quantum algorithms. |

Deutsch’s

algorithm
demonstrates task quantum
computer can perform in
one shot that classically

takes two shots.

M9921 94 | 1998 ‘2001 2005'2007 2010 | 2012 | 2014

198 §g3 1996 200 2003 2006 2009 | 2011 | 2013 | 2015
]

Shor s algorithm

Efficient algorithm for the

Integer factorization problem & the
eXp0 Discrete Ioga(lthm problem o
vetwl Superpolynomial speedup over
deter classical algorithms

quanﬁjlll dIOIUITS

Del
algq
Dem
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Quantum algorithms breakthroughs

Bernstein-Vazirani
ngorithm

monstrates a

" Abelian hidden

subgroup problem |perpolynomial separation
[Boneh and Lipton] etween probabilistic and |
Superpolynomial speedup ~ juantum algorithms. =
over classical algorlthms '

\_

4992 1% 1998 ‘2001 2005'2007 2010 2012!2014 —

198 §g3 996 200 2003 2006 2009 | 2011 | 2013 | 2015
]

Shor s algorithm

Efficient algorithm for the

Integer factorization problem & the
eXp0 Discrete logarithm problem

betwl SUPErpolynomial speedup over

deter classical algorithms

quanﬁjlll dIOIUITS

Del
algq
Dem

iCIS | Digital Security
Radboud University




Quantum algorithms breakthroughs

?erGrover's
4 I .
Abelian hidden |3 algorithm

Searching an unsorted
subgroup problem |
Boneh and Lot L database |
[Sone a}n P clm] q s Quadratic speedup over |
HPETPOTYNOMIAT SPEECUP ™ P glassical algorithms
over classical algorithms N y
7992 180¢ | /1998 ‘2001 2005 f2007 2010 | 2012 Izo14 —

W — - ——?O!— - —

198-%3 2000 2003 2006 | 2009 11 12013 | 2015
]

Shor s algorithm

Det Efficient algorithm for the

g;%: Integer factorization problem & the
Discrete logarithm problem

expo , li

betwl SUperpolynomial speedup over

deter classical algorithms

quamhm dIOIUITS o
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Shor’s algorithm [Shor '94]

* |Integer factorization algorithm
» Discrete logarithm problem

{Number theory + Parallelism + Interference]
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Shor’s algorithm [Shor '94]

 |nteger factorization algorithm
* Discrete logarithm problem

{Number theory + Parallelism + Interference]

| Best classical algorithm |

General number field sieve

p0(n'/3 (logn) 2/3)

(Subexponential complexity)
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Shor’s algorithm [Shor '94]

 |nteger factorization algorithm
* Discrete logarithm problem

{Number theory + Parallelism + Interference]

| Best classical algorithm | Shor’s algorithm

General number field sieve

0(n?)

p0(n'/3 (logn) 2/3)
(Polynomial complexity)

(Subexponential complexity)
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Shor’s algorithm [Shor '94]

 |nteger factorization algorithm
* Discrete logarithm problem

{Number theory + Parallelism + Interference]

| Best classical algorithm | Shor’s algorithm

General number field sieve

0(n?)

p0(n'/3 (logn) 2/3)
(Polynomial complexity)

(Subexponential complexity)

To factor a 2048 bit number:

~ 150,000 years < 1 second
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Grover’s algorithm [Grover "96]

{Search problem }

Input: A search space of N elements.
Problem: Find an element of the space that satisfies a property
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* A quantum algorithm based on amplitude amplification
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{Search problem }

Input: A search space of N elements.
Problem: Find an element of the space that satisfies a property

* A quantum algorithm based on amplitude amplification
« Offers quadratic speedup over classical algorithms

| Classical algorithms | Grover’s algorithm

(A(N) operations O (+/N) operations
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{Search problem }

Input: A search space of N elements.
Problem: Find an element of the space that satisfies a property

* A quantum algorithm based on amplitude amplification
« Offers quadratic speedup over classical algorithms

| Classical algorithms | Grover’s algorithm

(A(N) operations O (+/N) operations

Break a 8 character password of only lowercase letters:

~ 4,13 years < 5 days
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Grover’s algorithm [Grover "96]

{Search problem }

Input: A search space of N elements.
Problem: Find an element of the space that satisfies a property

* A quantum algorithm based on amplitude amplification
« Offers quadratic speedup over classical algorithms

| Classical algorithms | Grover’s algorithm
(A(N) operations O (+/N) operations

[ Provably optimal runtime! ]

Break a 8 character password of only lowercase letters:

~ 4,13 years < 5 days
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Today’s cryptography in use?

Algorithms we use: Practically implemented In:
* RSA encryption scheme * PKI/PGP
» DSA - digital signature o SSL/TLS (HTTPS, FTPS)
* Diffie-Hellman (DH) key exchange  SSH (SFTP, scP)
« ECDSA (Elliptic curve cryptography) * IPsec (IKE)
* Pairing based cryptography * IEEE 802.11

« Commitments
 Electronic voting

* Digital cash/credentials
* Multiparty computation
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Today’s cryptography in use?

Algorithms we use: Broken by Shor-like
» RSA encryption scheme Quantum Algorithms
- DSA-d )
- Diffie-H |
* ECDSA Algorithm Key Length ecurity feve
* Pairing 8 y Leng Conventional Quantum
Computing Computing
RSA-1024 1024 bits 80 bits 0 bits
RSA-20438 2048 bits 112 bits 0 bits
ECC-256 256 bits 128 bits O bits
ECC-384 384 bits 256 bits 0 bits
Effective key strength for conventional computing derived from NIST SP 800-57
\ “Recommendation for Key Management” )
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Today’s cryptography in use?

Influenced by Grover - like Algorithms

Doubling of key size

* Block ciphers
- AES

» Stream ciphers

 Hash functions
- SHA-1, SHA-2, SHA-3

o (All symmetric key primitives)
- MACs, HMACs, PRNGs, AE ciphers...

* Primitives based on NP-hard problems
- Code-based, Lattice-based, Multivariate systems
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Today’s cryptography in use?

Not trivial,

Influenced by Grover — like Algorithms but manageable!

Doubling of key
Security Level
Algorithm Key Length

e Block ciphers Conventional Quantum

- AES AES-128 128 bits 128 bits 64 bits
« Stream ciphers AES-256 256 bits 256 bits 128 bits
* Hash functions _

- SHA-1, SHA-2, SHA-3 Security Level
o (All symmetric key Algorithm Conventional Quantum

- MACs, HWACs, PRNG (Preimage/Collisions) (Preimage/Collisions)
 Primitives based o\ SHA-256 256/128 bits 128/85 bits

- Code-based, Lattice-b SHA-512 512/256 bits 256/170 bits

Effective key strength for conventional computing derived from NIST SP 800-57
‘ “Recommendation for Key Management”
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Some emerging questions!
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 |s it possible that in the future we come up with algorithms that
totally break symmetric crypto just as Shor’s algorithm breaks
Integer Factorization and Discrete Log?
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..OR ...

* |s it just a mere coincidence that we came up with efficient
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Some emerging questions!

 |s it possible that in the future we come up with algorithms that
totally break symmetric crypto just as Shor’s algorithm breaks
Integer Factorization and Discrete Log?

* ... and algorithms that break NP-compete problems?

..OR ...

* |s it just a mere coincidence that we came up with efficient
Quantum Integer Factorization algorithm before classical....

Actually nobody knows...
Where exactly
the algorithms solvable by quantum computers in polynomial time
fit in our established complexity hierarchy!
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Alphabet soup of Computational problems

* P: solvable in deterministic polynomial time

* NP: solvable in non-deterministic polynomial time

« PSPACE: solvable in polynomial space

« BPP: solvable in polynomial time with bounded probability error

« BQP: solvable in polynomial time by a quantum computer with bounded
probability error

We know that:

PS NP < PSPACE
P < BPP € BQP < PSPACE
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What we don’t know (and has implications to crypto):

BPP ? BQP BQP ? NP
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What we don’t know (and has implications to crypto):

BPP ? BQP BQP ? NP

Extreme cases:
BPP = BQP

We don't need quantum computers,
we just need to discover the
classical algorithms!!!
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We don't need quantum computers,
we just need to discover the
classical algorithms!!!
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What we don’t know (and has implications to crypto):

BPP ? BQP BQP ? NP

Extreme cases:
BPP = BQP

Both rather unlikely!

We don't need quantum computers,
we just need to discover the
classical algorithms!!!

NP < BQP

Classical cryptography is dead!!!
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What we don’t know (and has implications to crypto):

BPP ? BQP BQP ? NP

Extreme cases:
BPP = BQP

Both rather unlikely!

We don't need quantum computers,
we just need to discover the
classical algorithms!!!

NP < BQP

Classical cryptography is dead!!!

" Optimality of
Grover’s algorithm

NP

Indicates
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It's rather unlikely that (under the assumption that they are ever built)
quantum computers will kill ALL classical cryptography...
...At least not symmetric cryptography!
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What about public key cryptography?
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It's rather unlikely that (under the assumption that they are ever built)
quantum computers will kill ALL classical cryptography...
...At least not symmetric cryptography!

What about public key cryptography?

PKC discovered Quantum Then what?

computer built

1976 20XX
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It's rather unlikely that (under the assumption that they are ever built)
quantum computers will kill ALL classical cryptography...
...At least not symmetric cryptography!

What about public key cryptography?

PKC discovered Quantum Then what?

computer built

1976 20XX

Will we need quantum cryptography?
Or
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It's rather unlikely that (under the assumption that they are ever built)
quantum computers will kill ALL classical cryptography...
...At least not symmetric cryptography!

What about public key cryptography?

PKC discovered Quantum Then what?

computer built

1976 20XX

Will we need quantum cryptography?

Or
Is it possible to have strong classical cryptography
in the quantum world?
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Quantum Cryptography

Use quantum mechanical properties to perform
cryptographic tasks

Not based on computational assumptions
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Quantum key distribution

* Quantum random number generator
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* Quantum money
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Quantum Cryptography

Use quantum mechanical properties to perform
cryptographic tasks

Not based on computational assumptions

* Quantum key distribution

* Quantum random number generator
* Quantum commitment

* Quantum money

* Quantum e-voting

Even if quantum computers are built
it may take years (if ever) until quantum
cryptography is used in everyday life!!l
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Quantum Cryptography

Use quantum mechanical properties to perform
cryptographic tasks

Not based on computational assumptions

* Quantum key distribution
* Quantum random number generator
* Quantum commitment
* Quantum money

* Quantum e-voting

Benefit only to governments,
corporations, not to protect the people!

Even if quantum computers are built
it may take years (if ever) until quantum
cryptography is used in everyday life!!l
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A better alternative - Post Quantum Cryptography




Post Quantum Cryptography
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Post Quantum Cryptography

Bob's
K_ decryption
| 8 key

laintext  REASSTACl ciphertext LIl plaintext
P, algorithm algorithm |-

/
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Post Quantum Cryptography

Classical

™ plice's Bob's

K, encryption KB decryptior
| key

[g%ail) plaintext
algorith '

plaintext Tl ciphertext

algorithm
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Post Quantum Cryptography

Classical G Alice's Bob's Classical
KA encryption KB decryption
key | key

plaintext encryption ciphertext

algorithm

[g%ail) plaintext
algorith '
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Post Quantum Cryptography

Classical Classical

KA encryption KB decryption
key | key

encryption ciphertext [g%ail) plaintext
g algorithm algorith '

Quantum!
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Classical

Post Quantum Cryptography

Classical Cryptosystems believed to be secure

against quantum computer attacks

K_ decryption
| 8 key

encryption ciphertext [g%ail) plaintext
g algorithm algorith '

Quantum!

Classical
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Post Quantum Cryptography

Classical Cryptosystems believed to be secure

against quantum computer attacks

Code-based systems

Multivariate Quadratic systems

Lattice-based systems

Hash-based systems

Isogeny based systems
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Code-based Cryptosystems
McEliece 78! As old as RSA!

* Noisy channel communication:

Encoder

= C e
Decoder Y T
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Code-based Cryptosystems
McEliece 78! As old as RSA!

* |In cryptography:

Encoder—l C =C1°"Ch

Add intentional noise

y=c+te

Decoder
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Code-based Cryptosystems

« Hard underlying problem (NP hard); Decoding random linear codes

Given mG + e find m

« Confidence in encryption schemes

Encoder—l C =Cq1-Cq

>

Add intentional noise

= C e
Decoder Y T
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Multivariate Quadratic systems
« Hard underlying problem (NP hard): Solving systems of quadratics (MQ problem)
« Signatures
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Multivariate Quadratic systems
« Hard underlying problem (NP hard): Solving systems of quadratics (MQ problem)
« Signatures

Lattice-based systems
« Many different hard problems (SVP, Learning with errors (LWE, Ring-LWE, LPN))

* Encryption, signatures, key agreement
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« Hard underlying problem (NP hard): Solving systems of quadratics (MQ problem)
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Lattice-based systems
« Many different hard problems (SVP, Learning with errors (LWE, Ring-LWE, LPN))

* Encryption, signatures, key agreement

Hash-based systems

* Merkle, 89

* Only secure hash function needed (security well understood)
* Most trusted post quantum signatures
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Hash-based systems

* Merkle, 89

* Only secure hash function needed (security well understood)
* Most trusted post quantum signatures

Isogeny based systems
« Hard underlying problem: Finding isogenies on supersingular elliptic curves
* Very new area
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Multivariate Quadratic systems
« Hard underlying problem (NP hard): Solving systems of quadratics (MQ problem)
« Signatures

Lattice-based systems
« Many different hard problems (SVP, Learning with errors (LWE, Ring-LWE, LPN))

* Encryption, signatures, key agreement

Hash-based systems

* Merkle, 89

* Only secure hash function needed (security well understood)
* Most trusted post quantum signatures

Isogeny based systems
« Hard underlying problem: Finding isogenies on supersingular elliptic curves
* Very new area

* Key agreement iCIS | Digital Security
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Challenges in Post Quantum Cryptography

« Security models
- What are the exact capabilities of quantum adversaries?

* Security proofs
- Many classical techniqgues don’t work in the quantum world

« Security of hard problems
- Quantum algorithms for the hard problems?
- Ex. Smart use of Grover, dedicated algorithms
- Number of qubits for the algorithms??

iCIS | Digital Security
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Challenges in Post Quantum Cryptography

Key sizes, sighature sizes and speed

- Huge public keys, or signatures .... Or slow

- ex. ECC 256b key vs McElliece 500KB key

- ex. ECC 80B signature vs MQDSS 40KB signature

Software and hardware implementation
- Optimizations, physical security

Standardization
- What is the right choice of algorithm?

Deployment
- In TLS, smart cards, storage...
- Will take a long time...

iCIS | Digital Security
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NE‘ National Institute of Standards and Technology
Information Technology Laboratory

Computer Security Division

CONTACT SITE MAF

Computer Security Resource Center

CSRC Home About Projects /| Research Publications News & Events

CSRC HOME > GROUPS > CT = POST-QUANTUM CRYPTOGRAPHY PROJECT
Post-Quantum Cryptography

Project POST-QUANTUM CRYPTO STANDARDIZATION

NDnclments

Timeline: Call For Proposals Announcement
The National Institute of Standards and Technology (NIST) has initiated a

° F a” 2016 - Ca” f or Pf OPOSBIS process to solicit, evaluate, and standardize one or more quantum-resistant

o _ ' col public-key cryptographic algorithms. Currently, public-key cryptographic

November 2017 — deadline for SUbn'”IISSIOI’IS algorithms are specified in FIPS 186-4, Digital Signature Standard, as well as

* January 2019 = second round candidates special publications SP 800-56A Revision 2. Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography and SP

° 2'4 yeafS from now — I’GSU/tS 800-56B Revision 1. Recommendation for Pair-Wises Key-Establishment

¢ ? years later — Draft standard ready Schemes Using Integer Factorization Cryptography. However, these algorithms
are vulnerable to attacks from large-scale quantum computers (see NISTIR

o Dep/oyment ? 8105 Report on Post Quantum Cryptography). It is intended that the new public-

key cryptography standards will specify one or more additional unclassified,
publicly disclosed digital signature, public-key encryption, and key-establishment
algorithms that are available worldwide, and are capable of protecting sensitive
Submission Requirements government information well into the foreseeable future, including after the

Minimum Acceptability Requirements advent of quantum computers.

Ldll TOI FTOposails Announcement

Call for Proposals
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NE‘ National Institute of Standards and Technology
Information Technology Laboratory

Computer Security Division

CONTACT SITE MAF

Computer Security Resource Center

CSRC Home About Projects /| Research Publications News & Events

CSRC HOME > GROUPS > CT = POST-QUANTUM CRYPTOGRAPHY PROJECT
Post-Quantum Cryptography

Project POST-QUANTUM CRYPTO STANDARDIZATION

NDnclments

Timeline:
 Fall 2016 - call for proposals
» November 2017 — deadline for submissions .
. « 20 signatures

 January 2019 — second round candidates . .

« 49 Key encapsulation mechanisms
» 2-4 years from now — results . Around 10 broken
* 2 years later — Draft standard ready
* Deployment ?

« NOT a competition
« 82 submissions, 69 “complete and proper”

« Radboud involved in 8!

Ldll TOI FTOposails Announcement

algorithms that are available worldwide, and are capable of protecting sensitive
Submission Requirements government information well into the foreseeable future, including after the

Minimum Acceptability Requirements advent of quantum computers.

Call for Proposals
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Digital Security Group — Radboud University
involved in 8 Post Quantum Crypto candidates

KEMs Signatures

» Classic McEliece « CRYSTALS-DILITHIUM
- Code-based - Lattice based

Lattice based  SPHINCS+

« CRYSTALS-KYBER - Hash based

* NTRU-HRSS-KEM

* New Hope « MQDSS
- Implemented and tested by Google - [Chen, Hulsing, Rijneveld, S, Schwabe, 16]

- NIST candidate

» SIKE - First provably secure MQ signature scheme

- Isogeny-based - Hard problem: Solving systems of quadratic

equations (MQ problem)
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Some final words

If computers that you build are quantum, To read our E-mail, how mean
Then spies everywhere will all want ‘em. of the spies and their quantum machine;
Our codes will all fail, be comforted though,
And they'll read our emall, they do not yet know
Till we get crypto that’s quantum, how to factorize twelve or fifteen.
and daunt ‘em. Volker Strassen
Jennifer and Peter Shor

Thank you for listening!

?
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Recall ...

1994
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Recall ...

Shor’s algorithm

efficient quantum algorithm for
Integer factorization problem &
Discrete logarithm problem
(superpolynomial speedup)

1994

—
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Recall ...

Shor’s algorithm

efficient quantum algorithm for
Integer factorization problem &
Discrete logarithm problem
(superpolynomial speedup)

1994

_h—»

1996

Grover's algorithm
Searching an unsorted
database (quadratic speedup)
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Recall ...

Shor’s algorithm

efficient quantum algorithm for
Integer factorization problem &
Discrete logarithm problem

Deutsch (superpolynomial speedup)
Universal quantum

computer 1985 1994

_i——»

1996

Grover's algorithm
Searching an unsorted
database (quadratic speedup)
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Recall ...

Shor’s algorithm

efficient quantum algorithm for
Integer factorization problem &
Discrete logarithm problem

Deutsch (superpolynomial speedup)
Universal quantum

computer 1985 1994

.

1992 1996

Deutsch-Jozsa Grover's algorithm
algorithm Searching an unsorted

(exponential speedup) database (quadratic speedup)
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Recall ...

Shor’s algorithm
efficient quantum algorithm for
Integer factorization problem &
Discrete logarithm problem

Deutsch  (superpolynomial speedup)
Universal quantum v
computer 1985 1994

1982| 1990 1994 1995 1998| 1999 | 2003 2004 2005|2007 2009 | 2010 2012

1992 1996
Deutsch-Jozsa Grover's algorithm Y
algorithm Searching an unsorted 10U
(exponential speedup) | | database (quadratic speedup)

O
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Recall ...

Shor’s algorithm

efficient quantum algorithm for
Integer factorization problem &
Discrete logarithm problem

Deutsch \ (superpolynomial speedup)
Universal quantum
computer 1985 1994

1982 1990 1994 1995 1998 1999 | 2003 | 2004 2005§ 2007 2009 | 2010 2012 P
1992 1996 | Users
Deutsch-Jozsa Grover's algorithm
algorithm Searching an unsorted Uy
(exponential speedup) database (quadratic speedup)
o
Netscape |_|,.02 1
BILLION
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Recall ...

Shor’s algorithm
efficient quantum algorithm for

Integer factorization problem & Futurism

Discrete logarithm problem IBM Just Announced a 50-Qubit
Deutsch  (Superpolynomial speedup) Quantum Computer
Universal quantum

computer 1985 | 1994 November, 2017

1992 | 1996 JAN JREE
Deutsch-Jozsa Grover's algorithm
algorithm Searching an unsorted
(exponential speedup) database (quadratic speedup)

4.021

BILLION
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Today’s cryptography in use?

 Integer factorization

 Example — RSA:
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Today’s cryptography in use?

 Integer factorization

« Example — RSA:

1. Choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. Compute n =pq, z = (p-1)(q-1)
3. Choose e (with e<n) coprime with z.

4. Choose d suchthat edmod z =1

5. Public key is (n,e). Private key is (n,d).

Y Y
+ -
K K
B B
iCIS | Digital Security
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Today’s cryptography in use?

 Integer factorization

« Example — RSA:

1. Choose two large prime numbers p, q. 1. To encrypt m, compute x = m® mod n
(e.g., 1024 bits each)

- d
2. Compute n = pq, z = (p-1)(q-1) 2. To decrypt received x, compute m =x mod n

3. Choose e (with e<n) coprime with z. |
Magic _ e d
., m = (m mod n)" mod n
4. Choose d such that ed mod z = 1 happens! —

5. Public key is (n,e). Private key is (n,d).

Y Y
+ -
K K
B B
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Today’s cryptography in use?

* Discrete log

 Example - Diffie-Hellman Key Exchange:

Choose random private key Choose random private ke
Koa=a €{1,2,...,p-1} K,s=b €{1,2,...,p-1}
» Compute corresponding public key A
Kyupa=A = a2 mod p >
B Compute correspondig public key
< K,us= B =a” mod p
Compute common secret Compute common secret
k.5 = B? = ()" mod p K.g = AP = (a”)2mod p
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A Swiss army knife in cryptography — Digital signatures

Alice verifies signature and

Bob sends digitally signed integrity of digitally signed
message. message:
large
message% H(m) | €N CPYPTEQ
m msg digest
R Ka(H(m))
Bob's @¥== _d'g':ﬂl large |
private SITEE = sigharure message Bob's —
key Kq (encrypt) m oublic @*‘: digital

signature

k +
encrypted AR (decrypt)
msg digest l
(Ee—————1 Kp(H(m))
| H(m) H(m)
a T equal
? iCIS | Digital Security
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Today’s cryptography in use?

 Integer factorization

 Example — RSA:
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Today’s cryptography in use?

 Integer factorization

« Example — RSA:

1. Choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. Compute n =pq, z = (p-1)(q-1)
3. Choose e (with e<n) coprime with z.

4. Choose d suchthat edmod z =1

5. Public key is (n,e). Private key is (n,d).

Y Y
+ -
K K
B B
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Today’s cryptography in use?

 Integer factorization

« Example — RSA:

1. Choose two large prime numbers p, q. 1. To encrypt m, compute x = m® mod n
(e.g., 1024 bits each)

- d
2. Compute n = pq, z = (p-1)(q-1) 2. To decrypt received x, compute m =x mod n

3. Choose e (with e<n) coprime with z. |
Magic _ e d
., m = (m mod n)" mod n
4. Choose d such that ed mod z = 1 happens! —

5. Public key is (n,e). Private key is (n,d).

Y Y
+ -
K K
B B
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MQDSS

[Chen, Hulsing, Rijneveld, S, Schwabe, 16]

NIST candidate

First provably secure signature scheme

Hard problem: Solving systems of quadratic equations (MQ problem)

Input: Quadratic polynomials

P1sP2s-. -y Pm € ]Fq[jjln JEIE nxﬂ}
Question:

Solve the system of equations

pl(ul:"':uﬂ): 0
paliin. ) = 0
Pm (ul, c . ,’U,n) =0 iCIS | Digital Security

Radboud University



MQDSS

IDS

D v
com < Po(sk) com
chy  chy < ChSy (1K)
resp; < Pi(sk,com,chy) | resp;
ch,  chy g ChS,(1%)
resp, < Pa(sk, com,chy,resp, chy) | resp,
b + Vf(pk,com, chy, resp;,chy, resp,)

4

Signer Verifier

FS signature

com <— Po(sk)

chi < Hi(m,com) chi <~ Hi(m, com)
resp; <— Pi(sk, com, chi) chy <= Ha(m, com, chy, resp,)
cha <— Hz>(m, com, chy, resp,) b < Vf(pk,com, chy, resp,, cha, resp,)

resp, <— Pa(sk,com, chy, resp,, chs)
output : b

output : ¢ = (com, resp,, resp,)
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Code-based Cryptosystems

« Hard underlying problem (NP hard); Decoding random linear codes

Given mG + e find m

« Confidence in encryption schemes

Scrambler
matrix \
\

Goppa code

/ _ Permutation
S -G 7 . P rd matrix
kxk kxn fnxn

X Encoder—l C =Cq°Cq

oo en >

Add intentional noise

-1
4 Decg P

= C e
/57% Decoder [+— T
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Today’s understanding of

Information
security
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Today’s understanding of

Physical

Trust .
security

Cryptography
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Today’s understanding of

ar. ity

Trust Physical
security
AV a\'\\ab‘\\‘\w

Cryptography
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Today’s understanding of %_
QO
O

Trust Physng:al
security
o ori,
\
. 6@‘\\
N
@

Cryptography
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Today’s understanding of

Physical
\'\a\%\écurity

Y
Ceyptography
<
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The origins ...
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The origins ...

Turing '36

Turing _ | |
Machine |£| ﬂ
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The origins ...

Turing '36

Turing _ i )
Machine |ﬁ| ﬂ

Any algorithmic process
can be simulated efficiently
using a Turing machine
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The origins ...

Turing 36

Turing The classical

Machine computer

Any algorithmic process
can be simulated efficiently
using a Turing machine

iCIS | Digital Security
Radboud University




The origins ...

Central Processing Unit

Control Unit

Output
Device

Input

) Arithmetic/Logic Unit
Device

{ Theoretical model
von Neumann - =
Turing '36 architecture  wemoyunt

The classical

Turing

Machine

computer

Any algorithmic process
can be simulated efficiently
using a Turing machine
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The origins ...

Central Processing Unit

Control Unit

Output
Device

Input

) Arithmetic/Logic Unit
Device

{ Theoretical model
von Neumann - =
Turing '36 architecture  wemoyunt

a

T

Transistors

The classical

Turing

Machine

computer

Any algorithmic process
can be simulated efficiently
using a Turing machine { Hardware ]
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Implementation milestones

14-Qubit
Alist of minimal Controlled-not gates using ~ First Electronic Entgnglement
requirements for creatinga  only linear optical Quantum Processor ~ achieved Coherent

quantum computer elements demonstrated Created  p_wave claims quantusaperposition of 3
David Deutsch proposed (IBM) 7.qubit NMR I annealing, introduces billion qubits for 34g1 shows First Ful
degcrlbes the computer uantuchom tor D-Wave One min. at room Error Detection for
g:rlr\]/s;?::quantum demonstrated d P temperature  Quantum Computers
| 1995 | 1998 r2001 2005 12007 2010 | 2012 ' 2014 | 2016...
) 8 8

- 4 _—

) ® & ® 1

1985

jons (NIST)

1996

The C-NOT gate
experimentally
realized with trapped

2000 | 2003

NMR quantum computation
disputed
The field of linear optical

-
2000 | 2009

D-Wave Systems
claims to have
working 28-qubit
quantum computer

Practical error
rates achieved
(NIST)

2011 12013
]

2015

Data transfer via
quantum teleportation
over a distance of 10
feet with zero percent

Decoherence
suppressed for 2
seconds at room

quantum computing launched . error rate
Optical Quantum temperature
First experimental Computer Simulates
demonstration of a Qubyte crgated . Hydrogen — |
quantum algorithm using Quantum information 300 qubit/particle
a working 2-qubit NMR betweeln quantum A working transistor - quantum simulator
memories” transferred from a single atom  created

quantum computer
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Implementation milestones

A viable quantum computer “... is anywhere
between 10 years and 100 years from now,”

14-Qubit
A list of minimal Controlled-not gates using First Electronic Entgnglement
requirements for creatinga  only linear optical Quantum Processor  achieved Coherent
qrjngl;;nd(ﬁénl\ﬁ)lﬂer elements demonstrated Created D \yave claims quantusnperposition of 3
David Deutsch prop 7-qubit NMR Wt annealing, introduces billion qubits for 341 shows First Full
describes the computer rstie g D-Wave One min. atroom g ror Detection for
Universal quantum nstrated quantum computer temperature Quantum Computers

computer
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| 1995 | 1998 r |
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2001 | 2005 [2007 |2010 | 2012 I2014 Wm...
-—5011!! — )

1985 1996 2000 | 2003 |2006 | 2009 | 2015
, ] Data transfer via
The C-NOT gate NMR quantum computation D-Wave Systems Practical error quantum teleportation
experimentally disputed claims to have rates achieved Deconerence = e of 10
realized with trapped | The field of linear optical working 28-qubit (NIST) suppressed for 2 -
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ions (NIST) quantum computing launched | quantum computer seconds at room error rate
Optical Quantum temperature
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demonstration of a Qubyte crgated . Hydrogen — |
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A viable quantum computer “... is anywhere
between 10 years and 100 years from now,”

14-Qubit
A list of minimal Controlled-not gates using First Electronic Entanglement
requirements for creatinga  only linear optical Quantum Processor ~ achieved .
quantum computer elements demonstrated Created  p_Wave claims quantuaperposition of 3
David Deutsch proposed (IBM) 7.qubit NMR | | annealing, introduces billion qubits for 398yt shows First Ful
describes the computer st :2 qubt t D-Wave One min. atroom oy Detection for
g:rlr\:sl:?:: quantum demonstrated Juanium compuier temperature  quantum Computers
| 1995 | 1998 r2001 | 2005 [2007 |2010 \ 2012 | 2014 16
1985 1996 2000 | 2003 \G2006_ L2000 7” 20421701 5
| | r .
The C-NOT gate NMR quantum computation D-Wave Systems Practlcal error gj ;ittl;?nn?é?;g;?tati on
experimentally disputed claims to have rates achieved Deconerence = e of 10
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ions (NIST) quantum computing launched | auantum comouter seconds at room .
| | ARDA QUANTUM COMPUTATION REPORT:
g'erioe:sﬁf:tgﬁ”;f 'a aubyt “The future ability of quantum computers
quantum algorithm using Quant mjght be a decade or two away..
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quantum computer
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Implementation milestones

A viable quantum computer “... is anywhere
between 10 years and 100 years from now,”

“At current rates of progress, ... quantum
First E COMputers are at least a decade away”.

A list of minimal Controlled-not gates using '
requirements for creatinga  only linear optical Quantum Processor  achieved Coherent
g:j;gl;;ndi?énl\ﬁ)u"er elements demonstrated Created p.wave claims quantusnperposition of 3
David Deutsch 7-qubit NMR =419 aubi annealing, introduces billion qubits for 34z shows First Full
deecrrbes the computer ;Jantuchom tor | D-Wave One min. at room Error Detection for
Universal quantum demonstrated | mp wuarwi Computers
computer
| 1995 | 1998 r2001 | 2005 |2007 }20 \ 2012 2014 16
. ® . & & 1 ) ___ & & )& 4 —H! — | §
1985 1996 2000 | 2003 \ge2l06 L2000 20 20427015
| | ] — Datatransfer via
The C-NOT gate N.MR quantum computation D»‘,.’Vave Systems Practrcal error quantum teleportation
experimentally disputed claims to-have rates achieved Deconerence = e of 10
realized with trapped | The field of linear optical working 28-qubit (NIST) suppressedfor2 . .o percent
ions (NIST) quantum computing launched | auantum comnuter seconds at room -
ARDA QUANTUM COMPUTATION REPORT:

First experimental

demonstration of a Qubyt “The future ability of quantum Computers

quantum algorithm using Quant mjght be a decade or two away..
a Working 2_qub|t NMR etwew., Yuurieu A WUIRIY ual1dIdwI qumum simnulaLor
memories’ transferred from a single atom  created
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Implementation milestones

A viable quantum computer “... is anywhere
between 10 years and 100 years from now,”

“At current rates of progress, ... quantum

A list of minimal Controlled-not gates using First E CompUterS are at least a decade away”'
requirements for creatinaa Anhilinane antinal Piiantiim Dranacenr achieved
quantum computer . o
DavidDeutsch  Propesed BM) | “Some physicist predicted that within the next 10 to | ry
describes the . . :
Universal quantur 20 years quantum computers will be built that are 2>
t . . .
T 995 | 199 Sufficiently powerful to implement Shor’s ideas and
o e e to break all existing public key schemes”
1985 1996 200
The Q-NOT gate i POSt Quantum Crypto 8 .[;g?tation
experimentally wroputod . [ oo T e e [TAtes acmnieve over a distance of 10
realized with trapped | The field of linear optical working 28-qubit (NIST) T suppressedfor2 . .o percent
ions (NIST) quantum computing launched | auantum comnuter seconds at room -
ARDA QUANTUM COMPUTATION REPORT:

First experimental “ .

demonsptration of 3 Qubyt “The future ability of quantum computers
quantum algorithm using Quant might be a decade or two away...”

a Working 2_qub|t NMR betwec.. quurituin A WUIRIY uaixidwi — qudliim Simuidior
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Quantum Projects

COMPANY TECHNOLOGY WHY IT COULD FAIL

IEM Makes qubits from The error rate of the qubits is too high to operate them
superconducting metal together in auseful computer.
circuits.

Microsoft Building a new Kind of The existence of the subatomic particle usedin this qubit
“topoloagical qubit” that remains unproven. Evenifitis real, thereisn't yet evidence it
in theory should be more can be controlled.
reliable than others.

Alcatel-Lucent  Inspired by Microsoft's Same as above,

research, itis pursuing a
topological qubit based on
a different material.

D-Wave Sells computers based on It's not clear that its chips harness quantum effects. Even

Systems superconducting chips if they do, their design is limited to solving a narrow set of

with 512 qubits. mathematical problems.

Google After experimenting with Same as above. Plus, Google is trying to adapt technology

D-Wave's computers since
2009, it recently opened alab
to build chips ike D-Wave's,

first developed for a different kind of qubit to the kind used by
D-Wave.
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Quantum Projects

COMPANY TECHNOLOGY WHY IT COULD FAIL
IBA'S $3 BILLION INVESTMENT IN SYNTHETICBRAINS | .
o AND QUANTUM COMPUTING IR Kl

IBM THINKS THE FUTURE BELONGS TO COMPUTERS THAT MIMIC THE HUMAN BRAIN
AND USE QUANTUM PHYSICS...AND THEY'RE BETTING $3 BILLION ONIT.

Microsoft Building a new Kind of The existence of the subatomic particle usedin this qubit
“topoloagical qubit” that remains unproven. Evenifitis real, thereisn't yet evidence it
in theory should be more can be controlled.

reliable than others.

Alcatel-Lucent  Inspired by Microsoft's Same as above,
research, itis pursuing a
topological qubit based on
a different material.

D-Wave Sells computers based on It's not clear that its chips harness quantum effects. Even

Systems superconducting chips if they do, their design is limited to solving a narrow set of
with 512 qubits. mathematical problems.

Google After experimenting with Same as above. Plus, Google is trying to adapt technology

D-Wave's computers since first developed for a different kind of qubit to the kind used by
2009 itrecentlyopenedalab D-Wave.
to build chips ike D-Wave's,
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Quantum Projects

COMPANY TECHNOLOGY WHY IT COULD FAIL
IBM'S $3 BILLION INVESTMENT IN SYNTHETIC BRAINS |, _
IEM bils is too high to operate them
AND QUANTUM COMPUTING e
IBM THINKS THE FUTURE BELONGS TO COMPUTERS THAT MIMIC THE HUMAN BRAIN
AND USE QUANTUM PHYSICS...AND THEY FE BETTING $3 BILLION ON IT.
Microsoft Building a new kind of The existence of the subatomic particle usedin this qubit
“topoloagical qubit” that remains unproven. Evenifitis real, thereisn't yet evidence it
in theory should be more can be controlled.

reliable than others.

Alcatel-Lucent

Inspired by Microsoft's Same as above,
research, itis pursuing a

topological qubit based on

a different material.

D:\JAUQR
D-Wave The Quantum Computing Company™ antum effects. Even
Systems JAN 29, 2015 ving a narrow set of
D-Wave Systems Raises an Additional $29M, Closing 2014 Financing
at $62M
Google After experimenting with Same as above. Plus, Google is trying to adapt technology

D-Wave's computers since first developed for a different kind of qubit to the kind used by

2009 itrecentlyopenedalab D-Wave.
to build chips ike D-Wave's,
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Quantum Projects

COMPANY TECHNOLOGY WHY IT COULD FAIL
1
BM IBM'S $3 BILLION INVESTMENT IN SYNTHETIC BRAINS PR -
AND QUANTUM COMPUTING e GRS KN
nputer.
IBM THINKS THE FUTURE BELONGS TO COMPUTERS THAT MIMIC THE HUMAN BRAIN
AND USE QUANTUM PHYSICS...AND THEY FE BETTING $3 BILLION ON IT.
Microsoft Building a new Kind of The existence of the subatomic particle usedin this qubit
“topoloagical qubit” that remains unproven. Evenifitis real, thereisn't yet evidence it
in theory should be more can be controlled.
reliable than others.
Alcatel-Lucent  Inspired by Microsoft's Same as above,
research, itis pursuing a
topological qubit based on
a different material.
D:\WJauRk
D_WEUE The Quantum Computing Company™ E.I"Itl..lm Elfects EUE'.-I
Systems JAN 29, 2015 ving a narrow set of
D-Wave Systems Raises an Additional $29M, Closing 2014 Financing
at $ 62M MOTHERBOARD
Recent experiments have suggested that nothing particularly quantum is going on in
GDG-Q|E' After E?[I:]EFiI'I'IEH[iFIQ with he D-Wave machines, despite heavy interest and investment in the technology by
D-Wave's computers since both Google and NASA. A crucial paper in Science from July, "found no evidence of

2009, it recently opened alab

_ . : \ guantum speedup.” Now, Google is going in a different, more back-to-the-basics
to build chips ike D-Wave's, e s

o(TEL [l liflais MFOr one thing, the author of the Science paper, John Martinis, is

now in Google's employ, tasked with advancing beyond tentative D-Wave technology
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Quantum Projects

COMPANY TECHNOLOGY WHY IT COULD FAIL

IBA'S $3 BILLION INVESTMENT IN SYNTHETICBRAINS | .
o AND QUANTUM COMPUTING IR Kl

IBM THINKS THE FUTURE BELONGS TO COMPUTERS THAT MIMIC THE HUMAN BRAIN
AND USE QUANTUM PHYSICS...AND THEY'RE BETTING $3 BILLION ONIT.

Microsoft Building a new Kind of The existence of the subatomic particle usedin this qubit
“topoloagical qubit” that remains unproven. Evenifitis real, thereisn't yet evidence it
in theory should be more can be controlled.

reliable than others.

Alcatel-Lucent  Inspired by Microsoft's Same as above.,
research, itis pursuing a
topological qubit based on
a different material.
D:\Waulk
D-Wave antum effects. Even
Systems JAN 29, 2015 ving a narrow set of
D-Wave Systems Raises an Additional $29M, Closing 2014 Financing
at $62M MOTHERBOARD
T —— Recent experiments have suggested that nothing particularly quantum is going on in
GDG-Q|E Google IS Investing More d he D-Wave machines, despite heavy interest and investment in the technology by
in Quantum Computing both Google and NASA. A crucial paper in Science from July, "found no evidence of
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Quantum Projects

COMPANY TECHNOLOGY WHY IT COULD FAIL
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IBM THINKS THE FUTURE BELONGS TO COMPUTERS THAT MIMIC THE HUMAN BRAIN
AND USE QUANTUM PHYSICS...AND THEY'RE BETTING $3 BILLION ONIT.

iel Nl L R LD ER L LR < L ibatomic particle used in this qubit
2nifitis real, there isn't yet evidence it

Microsoft

Microsoft's making big investments into
quantum computing

NIST Home > Public Affairs Office > News Releases > Joint Quantum Institute Created by University of Maryland, NIST and NSA

Joint Quantum Institute Created by University of Maryland, NIST and NSA

For Immediate Release: September 11, 2006
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Multi Qubit systems

2-qubit system:

[¥) = |00) + B|01) +[10) + 0[11) = [af* + [B]* + [+[* + o] = 1
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Multi Qubit systems

2-qubit system:

[¥) = |00) + B|01) +[10) + 0[11) = [af* + [B]* + [+[* + o] = 1

N-qubit system:

— 2"states |0), |1),...,[2" — 1)

2"n 1 2" —1

Uy = aili) Y laifP=1
1=0 1=0
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Entanglement — Quantum weirdness example

Bell states: ) = %‘00) | \%‘11)

Measurement of first qubit

1 | .
=~ => The first qubit is |0)

— -~ = The first qubitis |1)
2
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Entanglement — Quantum weirdness example
1

Bell states: |2)) \/5‘00> | \%‘11)

Measurement of first qubit

1 | .
=~ => The first qubit is |0)

— -~ = The first qubitis |1)

The only two
possible
outcomes!
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Entanglement — Quantum weirdness example

Bell states: ) = %‘00) | \%‘11)

Measurement of first qubit

1 | .
=~ => The first qubit is |0)

The second qubit is |0)
with probability 1

— -~ = The first qubitis |1)
2

The second qubit is |1)
with probability 1

The only two
possible
outcomes!
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Entanglement — Quantum weirdness example

Bell states: ) = %‘00) | \%‘11)

Measurement of first qubit

1 | .
=~ => The first qubit is |0)

The second qubit is |0)
with probabillity 1

_1 The first qubit is |1)
2

The second qubit is 1)
with probabillity 1

_—

The measurement of the second qubit
always gives the same result
as the measurement of the first qubit!
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Entanglement — Quantum weirdness example
1

Bell states: |2)) \/5‘00> | \%‘11)

Possible since [Y) # [@1)®]|p,) !

Measurement of first qubit

1
— = = The first qubitis |0)

2
The second qubit is |0)
with probabillity 1
_1 The first qubit is | 1)
2

The second qubit is 1)
with probability 1

_—

The measurement of the second qubit
always gives the same result
as the measurement of the first qubit!
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Deutsch’s problem:
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Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!
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Quantum Interference!

Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!

- Uy
1) —H ¥y ydf(z)
7 T T T
Po)  |¢n) 2)  |s)
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Quantum Interference!

Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!

- Uy
1) —H ¥y ydf(z)
7 T T T
Po)  |¢n) 2)  |s)

P
0) + 1)
2

£¢1> =

[o>ﬁ1>ﬂ

1/ @la)(0) — [1)/V2 |
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Quantum Interference!

Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!

- Uy
1) —H ¥y ydf(z)
7 T T T
Po)  |¢n) 2)  |s)

-
0) + 1)
2

™~
[‘%”ﬂ Lw» = £|f0) & f(1) [mﬁ'”ﬂ

1/ @la)(0) — [1)/V2 |

£¢1> =
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Quantum Interference!

Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!

0) —E— ¥ v H— Measuring the first qubit yields:
Us
B 0)® f(l
10—y vere F(0) & f(1)
T T i i
Yoy |ih) Y2) [P
7 .~ )

0) + 1)
2

£¢1> =

[‘%”ﬂ Lw» = £|f0) & f(1) [mﬁ'”ﬂ

C)a)(0) — [1)/V2
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Quantum Interference!

Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!

0) —E— ¥ v H— Measuring the first qubit yields:
Us
] 0) D j(1
1) —H ¥y yef(z) fy i(. )
T T 0 0 0 1
Vo) |n) Ya)  |13) constant balanced
pd N V

0) + 1)
2

£¢1> =

[‘%”ﬂ Lw» = £|f0) & f(1) [mﬁ'”ﬂ

C)a)(0) — [1)/V2
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Quantum Interference!

Deutsch’s problem:
Determine whether f(x):{0,1} — {0,1} is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one!

0) — A First algorithm to illustrate the power of |ypit yields: A
Quantum computation! 1)
1) — H T ol @) —
1 t 1 1 0 1
Vo) Y1) Pa)  |1h3) constant balanced
o~ /

{W vl [O>\/§1>ﬂ {wﬁ = £|0) & f(1) [‘”ﬁ'”ﬂ

C)a)(0) — [1)/V2
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==

10) +11) ] [Iﬂ}—ll}
L V2 V2
10) — 1) {IU}—II}

V2 V2

The final Hadamard gate on the first qubit thus gives us

] if £(0) = f(1)
[th2) = (1.43)

+

} if £(0)# £(1).

(10 "“t,i'”' if £(0) = £(1)
[h3) = < ;Iﬂ} ) II};
Sl v,

Realizing that f(0) & f(1)1s 01f f(0) = f(1) and 1 otherwise, we can rewrite this result
concisely as

(1.44)
if f(0) # f(1).

W3) = £[f(0) D f(1)) ['Ubi“}] , (1.45)

iCIS | Digital Security
Radboud University




Shor’s algorithm [Shor '94]

 |nteger factorization algorithm
* Discrete logarithm problem

[Number theory + Parallelism + Interference]
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 |nteger factorization algorithm
» Discrete logarithm problem

[Number theory + Parallelism + Interference]

/

Convert the problem
to the problem of
period finding
(can be implemented
efficiently classically)
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 |nteger factorization algorithm
» Discrete logarithm problem

[Number theory + Parallelism + Interference]

/

Convert the problem
to the problem of
period finding
(can be implemented
efficiently classically)

Simon’s algorithm:
Finds the unknown period of a periodic function

iCIS | Digital Security
Radboud University




Shor’s algorithm [Shor '94]

 |nteger factorization algorithm
» Discrete logarithm problem

[Number theory + Parallelism + Interference]

/
Convert the problem Find the period using
to the problem of Simultaneous evaluation

period finding and
(can be implemented Quantum Fourier Transform
efficiently classically) (quantum speedup)

Simon’s algorithm:
Finds the unknown period of a periodic function
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Shor’s algorithm [Shor '94]

{Number theory ]
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Shor’s algorithm [Shor '94]

{Number theory J

od NN (xx#*1 mod NN) then gcd(xx+1, NN) is a nontrivial factor of NN.

xaxxxaaaxa mod NN is a periodic function, gcd x, N gcdged x, N

x, Nxx, NN x, N gcd x, N =1

Important facts:

 If x is a nontrivial square root of 1 mod N (x # +1 mod N) then
gcd(x + 1, N) is a nontrivial factor of N.
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Shor’s algorithm [Shor '94]

{Number theory J

cdfyr/2yyyr/2rr/2yr/2 +1, NNV) is a nontrivial factor of V/V.
2y r/2 is a nontrivial square root of 1 mod NN. Thus
cdged y, N y, Nyy, NNy, N gcd y, N =1, then with probability at
least V4,
Od NN (xx#£1 mod NN) then gcd(xx+1, NN) is a nontrivial factor of NN.
xaxxxaaaxa mod NN is a periodic function, gcd x, N gcd ged x, N
x, Nxx, NN x, N gcd x, N =1
Important facts:
 If x is a nontrivial square root of 1 mod N (x # +1 mod N) then

gcd(x + 1, N) is a nontrivial factor of N.

Thm: If N is an odd composite number, r is a period of F,
gcd(y"/? + 1, N) is a nontrivial factor of N.
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Shor’s algorithm [Shor '94] - Step by step

1. Choose 1 <z < N — 1, such that ng(:l’?j N) =1
2. Prepare a quantum circuit:

e Ll — A | Va(lh) [B)) = 1) [ka’)
o =]
t |
0) 4 H p— = — /74—
V4 Uly) = |xy(modN))
0) L /74 |
. : Ulug) = X7 |ug)
s [uhH .
1) -+ ug) = NG D e 2 K3k modNy

k=0
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Shor’s algorithm [Shor '94] - Step by step

—1r—1
3. —10...0)]0...1) = ®rl —2mivk
o) = ) ) =0) \[2 Ye xX*modN)
_ t" n" s=0 k=0
0) H H — L A=
- R
L LS :
0) H H {— A
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Shor’s algorithm [Shor '94] - Step by step

r—1r—I1
t —omitk) k
4. |pq) = \/—ZQ 1\] )|0) ‘1 = —Z\j \};\};Z Ze 2T rk\kaodN>
s=0 k=0
0) 4 H - L A=
. : : - :
L £3 :
0) o H - AL
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Shor’s algorithm [Shor '94] - Step by step

5 ‘992 \/_2‘] z zezﬂilerr —2mi= k ‘x m0dN>

3 0/k=0
0) — 1 — . A=
t£{: 2]
0) - H |— aaupyl
Ve L=
ny: - - Ve(I9) 1K) = 14) [ka?)
1) .
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Shor’s algorithm [Shor ’94] - Step by step

6. |p3) = \/_Z\/_Zezm UHR 1Y |x¥ mod N

0y o H — A=

('~|.
DFTT

0) 4 H [— — -
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Shor’s algorithm [Shor '94] - Step by step

r—1
7. pa) = %Z s/ r) \kaodN> (inverse QDFT)
0) 4 H — . HA
. . N
t La I
0) 4 H p— —— /74 -

N —
QDFT |]f Z WZ]]C/N‘]

1) % pa
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Shor’s algorithm [Shor '94] - Step by step

S
4. Measure to obtain —
r
0) — H — - A -
. . — :
C E :
0) - H |— — It
0) VZE /74
ni{:- - : 5 is rational
) : ) -
1) A Can be estimated using
continued fractions
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Shor’s algorithm [Shor '94] - Step by step

S
4. Measure to obtain —
r
0y o H |— - A -
: . — :
t E A candidate
0y = o |— — ~~H  for the period!
0) VZE A /
n{ - ’ ) IS rational
1) A Can be estimated using
continued fractions
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Shor’s algorithm [Shor '94]

» Shor also proposed how to solve the

{ Discrete logarithm problem }

Input: g,b = g°* € Z;, where g? =1, s €{0,1,..,p — 1}.
Problem: Find s.
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Shor’s algorithm [Shor '94]

» Shor also proposed how to solve the

{ Discrete logarithm problem }

Input: g,b = g°* € Z;, where g? =1, s €{0,1,..,p — 1}.
Problem: Find s.

Main Idea
S5,T) ’

fiZpXZp —Lp*ffiZpLLZpppLp*ZpZZp
pPLp DLf:Zp*XZp —Lp*pp f1Lp*XLp —L
prx*xfiLp*XZp —Lpx*, ffxyxx,yyxy=gxgg
gxxxgx b-ybbb-y-yyb-y

, [, y) =g9*b™7

f 1s periodic with period (s, 1) iCIS | Digital Security
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Shor’s algorithm [Shor '94]

» Shor also proposed how to solve the

{ Discrete logarithm problem }

Input: g,b = g°* € Z;, where g? =1, s €{0,1,..,p — 1}.
Problem: Find s.

Main Idea
S5,T) ’

fiZpXZp —Lp*ffiZpLLZpppLp*ZpZZp

pp 4 p HZfZZpXZp:ZpXZp —7
prx*fiLp*xLp —Lp *, VY X,y =9x99

gxxxgx b-ybbb-y-yyb-y

, [, y) =g9*b™7

f 1s periodic with period (s, 1) iCIS | Digital Security
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Shor’s algorithm [Shor '94]

» Shor also proposed how to solve the

{ Discrete logarithm problem }

Input: g,b = g°* € Z;, where g? =1, s €{0,1,..,p — 1}.
Problem: Find s.

1 Classical algorithms .

Various number/function field
sieve algorithms LALpppZp*XZLpidlp

Lo XLp —L
0(n/3 (log n) 2/3 m
e (log ™) %) XY XX,YY X,y = g X gg

(Subexponential complexity b -y
where n = logp)
) » J\AMY)— 4 U ’
f Is periodic with period (s, 1) iCIS | Digital Security
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Shor’s algorithm [Shor '94]

» Shor also proposed how to solve the

{ Discrete logarithm problem }

Input: g,b = g°* € Z;, where g? =1, s €{0,1,..,p — 1}.
Problem: Find s.

| Classical algorithms " Shor’s algorithm

Various number/function field
sieve algorithms

0 (n*lognloglogn)

N Y

T ey |

1/3 2/3 i -
eO(n (logn) </°) (Polynomial complexity where

— ~ 1
(Subexponential complexity ] n 0gp)
where n = logp)
) , J\W,Y) =Yy U~ g
f is periodic with period (s, 1) iC1s | Digital Security
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Shor’s algorithm for discrete log [Shor '94]

4[ Setup }

An implementation of the unitary
U: [x)|y)z) — |x)y)lz + f(x,¥)), where f(x,y) =g*b™”

1. 0)]0)]|0) - initial state

2 —Zzn‘l 27=1|x)|y)|0) - superposition

3 —>—Z§161 §161 OIIf(xy)) -apply U

4 ﬁzfgol sL/p)1/p)If (sl 1)) - apply inverse Fourier transform
5.

6

— sl/p,l/p — measure first two reqisters
If p is known, easy to find s, otherwise use continuous fraction

algorithm
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Shor’s algorithm for discrete log [Shor '94]

{Setup}

ssll/pp, ll/lpp — measure first two registers

T p11 p ppppp 1 p E0p-1]slpllip]| f (si,]) U=0
(=0 p-1|slp|lp]| f (sl,l) pp=11=0p-1|sl/p|l/p]| f (sll) |

' Procedure Up | Up Wpp Up | £ (sLl) fff f (ssWLl) f (sLl) 1=0
| £ (sl,l) - apply inverse Fourier transform
12n 11 2n 2n22nmm2n 1 2n x=0 2n-1 y=0 2n -1

x|y ]| f(x,y) xx=0x=0 2n-1 y=0 2n-1|x|y|f(x,y) 2n2
2nmn2n-1x=0 2n-1 y=0 2n-1|x|y| f(x,y) y=0 2n -1
| x|y [ fxy) yy=0y=0 2n-1[x|y|[f(x,y) 2n22nnn2n
“1y=0 2n-1]|x|y|fly) | xxxx|yyyyl|fxy)fflxx,yy)
fxy) yv=0 2n-1|x|y[f(xy) x=0 2n-1 y=0 2n-1]|x|y]|
f(x,y) -apply UU

12n 11 2n 2n22nmm2n 1 2n x=0 2n-1 y=0 2n -1
x|y |0 xx=0x=0 2n-1 y=0 2n-1|x|y|0 2n22nnn2
n-1x=0 2n-1 y=0 2n-1|x|y|0 y=02n-1|x|y]|0

yy=0y=0 2n-1]|x|y|0 2n22nnmn2n-1y=02n-1|x|y

. iCIS | Digital S it
|0 |xxxx|yyyy|000y 02n-1]x|y|0 x=0 2n 1y-o'Radb0'§5;m§§;';t§

q Py _4 I -~ . I 7y 1 llf\f\lﬁlf\f\f\l II\IF\




Grover’s algorithm [Grover "96]

H®™(2]0)(0| — H®" = 2|8)(S| — I

Grover diffusion operator U,

R S

0) 7& H@TL H@n ) |Uﬂ> <0’r1| o Iﬁ H®” - _/7&
Us

1) H

—\f—
Repeat O(v/N) times
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Grover’s algorithm [Grover "96]

H®™(2]0)(0| — H®" = 2|8)(S| — I

Grover diffusion operator U,
——

0) 7& H®n H®n ) |Un> <Un| I, gon|— ... _/7&
Ui
L) H t

z) = (1))

Recognizes a solution
of the search problem
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Grover’s algorithm [Grover "96]

H®™(20)(0| — DHF™ = 2|8)(S| — I

Grover diffusion operator U,

0) 7& H@TL H@n ) |0ﬂ.> <U’r1| o Iﬂ H®n - _/7&
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1) H ’
ora,:cle Repe%)(ﬁ ) times
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Moves the state vector

Recognizes a solution closer to the solution space
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Grover’s algorithm [Grover "96]
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Grover’s algorithm [Grover "96]
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Grover’s algorithm [Grover "96]

w) (For simplicity: One solution)
4 * |w) - solution, |s') = \/%inwlx) - not solutions
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After r = mV/N /4 rounds the solution is
obtained with great probability!
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Summary of quantum algorithms

Based on
Quantum Fourier Transform

Based on
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 Shor’s algorithm (’94)
* Integer factorization problem
 Discrete logarithm problem

 Superpolynomial speedup over classical
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Summary of quantum algorithms

Based on Based on
Quantum Fourier Transform Amplitude amplification
 Shor’s algorithm (’94) * Grover's algorithm (°96)
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Summary of quantum algorithms
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Why do we care so much about these algorithms?
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Quantum Fourier Transform

 Shor’s algorithm (’94)
* Integer factorization problem
 Discrete logarithm problem
 Superpolynomial speedup over classical
algorithms

* Abelian hidden subgroup problem

 Superpolynomial speedup over classical
algorithms

Based on
Amplitude amplification

* Grover's algorithm (°96)
 Searching an unsorted database
 Quadratic speedup over classical

algorithms

* Collision finding problem (Brassard

et al. ’97)

 Polynomial (3/2) speedup over classical

algorithms

iCIS | Digital Security
Radboud University




Why do we care so much about these algorithms?

Based on Based on
Quantum Fourier Transform Amplitude amplification
 Shor’s algorithm (’94) * Grover's algorithm (°96)
* Integer factorization problem  Searching an unsorted database
 Discrete logarithm problem  Quadratic speedup over classical
 Superpolynomial speedup over classical algorithms
algorithms  Collision finding problem (Brassard
* Abelian hidden subgroup problem et al. 97
* Superpolynomial speedup over classical » Polynomial (3/2) speedup over classical
algorithms algorithms
< , o B
If they are ever Today'’s security infrastructure for any
practically kind of data communication/ storage
Implemented will be rendered worthless!?!

- /
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MQ (multivariate quadratic) Cryptosystems

« Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
* (Mainstream) No reduction to the hard problem — related problems believed to be hard
» Confidence in signatures

Input @

|

r=(x1,...,Tn)

private: Sl
/ public :
P=ToFoS

x
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MQ (multivariate quadratic) Cryptosystems

« Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
* (Mainstream) No reduction to the hard problem — related problems believed to be hard
» Confidence in signatures
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MQ (multivariate quadratic) Cryptosystems

« Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
* (Mainstream) No reduction to the hard problem — related problems believed to be hard

» Confidence in signatures

input x

prwate@ linear

o+ public :
P=ToFoS

Yy’

rivate: :
P @ linear

output 1y

PoSSo:

Input:

P1;P2,---sPm € Fq[:ﬁla s ,;'I?n}
Question:

Find - if any - (u1,...,u,) € F st.

pl(ulg---,’li-n): ()
pg(ul? T aun) = 0

p-m,(ﬂ-l, e auﬂ,) = 0
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MQ (multivariate quadratic) Cryptosystems

Fast, simple operations, short signatures -5

Large keys, no security proofs _\E

« Parameters for Gui [Petzoldt, Chen, Yang, Tao, Ding, 15], Rainbow [Ding, Schmidt, 04]
* Implementation [Chen, Li, Peng, Yang, Cheng, 17]

Security Signature scheme Public key |Private key |Signature |Sign() Verify()
(post quantum) (kB) (kB) size (bit) |k cycles |k cycles
80 Gui(GF(2),120,9,3,3,2) 110.7 3.8 129
100 Gui(GF(2),161,9,6,7,2) 271.8 7.5 181
128 GUI1(4,120,17,8,8,2) 225.8 9.6 288 7,992.8 342.5
80 Rainbow(GF(256),19,12,13) 25.3 19.3 352
100 Rainbow(GF(16),25,25,25) 65.9 43.2 288
128 Rainbow(GF(31),28,28,28) 123.2 74.5 420 774 70.8
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MQ (multivariate quadratic) Cryptosystems

« Hard underlying problem (NP hard): Polynomial system solving (PoSSo)

Two new provably secure signatures
« MQDSS [Chen, Hulsing, Rijneveld, S, Schwabe, 16] — security proof in the ROM
« Sofia [Chen, Hulsing, Rijneveld, S, Schwabe, 17] — security proof in the Quantum ROM

Security Signature scheme Public key Private key | Signature size |Sign() Verify()
(post quantum) (B) (B) (KB) kK cycles k cycles
128 (ROM) MQDSS-31-64 72 64 40 8,510.6 5,752.6
128 (QROM) Sofia-4-128 64 32 123 21,305.5| 15,492.6

* Transform from provably secure Identification schemes
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MQDSS

IDS

D v
com < Po(sk) com
chy  chy < ChSy (1K)
resp; < Pi(sk,com,chy) | resp;
ch,  chy g ChS,(1%)
resp, < Pa(sk, com,chy,resp, chy) | resp,
b + Vf(pk,com, chy, resp;,chy, resp,)

4

Signer Verifier

FS signature

com <— Po(sk)

chi < Hi(m,com) chi <~ Hi(m, com)
resp; <— Pi(sk, com, chi) chy <= Ha(m, com, chy, resp,)
cha <— Hz>(m, com, chy, resp,) b < Vf(pk,com, chy, resp,, cha, resp,)

resp, <— Pa(sk,com, chy, resp,, chs)
output : b

output : ¢ = (com, resp,, resp,)
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Lattice-based Cryptosystems

* Encryption, signatures, key exchange
* Many different hard problems

CVP, = BDD,/,
A /
usSVPS
Vvn/logn
HSVP, >
\
SVP., = GapSVP,
\/_/' \
A /*
SBP’Y \/ﬁ SISn,q,?n,y
*
S / ‘&
SIVP,-Y Quantum - LWEn:q,m-,a{
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Lattice-based Cryptosystems

* Learning with errors (LWE)
* Variants R-LWE, Module-LWE, LPN, ...
- Additional structure undermines security claims

o Let Ry = Zg[X]/(X" 4+ 1)
e Let x be an error distribution on R
o Let s € R, be secret

e Attacker is given pairs (a,as + e) with

e a uniformly random from R
e e sampled from y

e Task for the attacker: find s

e Common choice for y: discrete Gaussian
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Lattice-based Cryptosystems

* Learning with errors (LWE)
* Variants R-LWE, Module-LWE, LPN, ...
- Additional structure undermines security claims

o Let Rq = Zy[X]/(X"+1) Alice (server) Bob (client)
e Let x be an error distribution on R, S, € ¢ Y s’ e <

o Let s € R, be secret b<as -+ e " ,  ucas + €
o Attacker is given pairs (a,as + e) with "

e a uniformly random from R

D G el A 7 Alice has —us = ass’ -
e Task for the attacker: find s , ,
| | | Bob has —= bs’ = ass’ -
e Common choice for y: discrete Gaussian
approximately same small
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Lattice-based Cryptosystems

FRODO [Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, 16]
 NewHope [Alkim, Ducas, Poppelmann, Schwabe, 16]

- Google Experiment for Chrome 2016: New hope + X25519 used in Chrome Canary
for access to some Google services

NTRU Prime [Bernstein, Chuengsatiansup, Lange, van Vredendaal, 106]
Kyber [Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Stehle, 17]

Scheme Security Hard problem |KeyGen |Enc Dec Public key | Private key | Ciphertext
bits/(type) (cycles) |(cycles) |(cycles) |(bytes) (bytes) (bytes)
FRODO 130 (pass.) |LWE 2938 K| 3484 K 338 K 11 296 11280 11288
NewHope 255 (pass.) |Ring-LWE 88920 110986 | 19422 1824 1792 2048
NTRU Prime |[129 (CCA) |NTRU like > 51488 1232 1417 1141
Kyber 161 (CCA) | Module-LWE 77892 119652 125736 1088 2400 1184
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Hash-based Signatures

* Only secure hash function needed (security well understood, standard model proof)

 Merkle, 89 P?
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Hash-based Signatures

* Only secure hash function needed (security well understood, standard model proof)

5000

« Merkle, 89 SIG=(=2, A

[H\ @

CIRC (R CHl
O H CINCY
Jo
Q{ S

? o ? o i /0 JO

OoTS 0TS 0TS OTS OTS QTS OTS
— 1+ 1 /7 1 I sk 1 i I 1

iCIS | Digital Security
Radboud University

Figure: Andreas Hulsing



Hash-based Signatures

Most trusted post quantum signatures
Two Internet drafts (drafts for RFCs), one in ,waiting for ISRG review"

XMSS - stateful, but forward secrecy [Buchmann, Dahmen, Hulsing, 11]
SPHINCS - stateless [Bernstein, Hopwood, Hulsing, Lange, Niederhagen,
Papachristodoulou, Schneider, Schwabe, O’'Hearn, 15]

Sign Verify Signature |Public Key |Secret Key |Bit

(ms) (ms) (byte) (byte) (byte) Security
XMSS-SHA-2 35.60 1.98 2084 1700 3,364 157
XMSS-AES-NI 0.52 0.07 2452 916 1,684 84
SPHINCS-256 13.56 0.39 41000 1056 1088 128
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Challenges in Post Quantum Cryptography

Key sizes, sighature sizes and speed

- Huge public keys, or signatures .... Or slow

- ex. ECC 256b key vs McElliece 500KB key

- ex. ECC 80B signature vs MQDSS 40KB signature

Software and hardware implementation
- Optimizations, physical security

Standar_dizatio.n | | PQC RYPTO
- What is the right choice of algorithm? ICT-645622

Deployment
- In TLS, DTLS, constrained devices, storage...
- Will take a long time...
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Thank you again for listening!

HOLJ'S YOUR THE PROTECT EXISTS
QUANTUM COMPUTER TN A STMUL TAMNEOUS CANI  THATS
PROTOTYPE COMING STATE OF BEING BOTH OBSERVE  p TRICKY
TOTALLY SUCCESSFUL ITT QUESTION
AND NOT EVEN
STARTED.
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