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• How can Alice make sure she is talking to Bob?

• How can Bob prove that Alice sent some message?

• How can they make sure that even if Malice finds out a private key, their previous
communication is secure?

• …
• …
• …

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Private 
K-1

A

Public 
KA

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Private 
K-1

A

Public 
KA

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Private 
K-1

A

Public 
KA

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Private 
K-1

A

Public 
KA

’

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Verify

Private 
K-1

A

Public 
KA

’

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Verify

I knew Alice 
would never 
write this!!

Private 
K-1

A

Public 
KA

’

Alice and Bob have more problems than just secrecy…



message message

Encryption 
algorithm

Decryption 
algorithm

ciphertext ciphertext
dX#Crthkcb
ys@5zdh…

Dear Bob, I miss you… Dear Bob, I miss you…

ciphertext’

message’

Dear Bob, I HATE you…

Verify

I knew Alice 
would never 
write this!!

Private 
K-1

A

Public 
KA

’
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• Algorithms based on 

Integer factorization Discrete logarithm over different groups

Given integer N find its prime factors Given generator 𝑔𝑔 ∈ 𝐺𝐺 and any 𝑦𝑦 ∈ 𝐺𝐺, 
find 𝑥𝑥 such that 𝑔𝑔𝑥𝑥 = 𝑦𝑦

BOTH:
Subexponential complexity

> Polynomial
< Exponential

Today’s cryptography in use?
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A peak inside

(…a thought experiment…)
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Qubit (short of quantum bit)

State of a qubit:

Bit – the unit of 
classical information

0 or 1

Qubit – the unit of 
quantum information
A combination of 

0 and 1

vs

Measurement

non-deterministic
collapse

Caution: a qubit holds 
only 1 bit of information !!!
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Quantum gates

Unitary operator  𝑈𝑈𝑈𝑈† = 𝑈𝑈†𝑈𝑈 = 𝐼𝐼

  
 
 

 
  

 
  

  
 
 

  
 

 

 
 

 
 

      
 

 
 

 
 

 
 

 
 

   
 

    
 

 
 

 

 
 

 

 

  

 

 

   
 

   
 

   
 

 

One qubit gates Two qubit gate 

All quantum transformations
are reversible 

(No destruction of information as in classical gates)
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• Classical computations?

What kind of computations are possible using quantum circuits?

Simulate fair coin toss

Toffoli gate
Simulate NAND gate

With probability 1/2

Efficient simulation of a 
classical non-deterministic computer 

Why bother exploit quantum effects for 
classical computations?

Mass production of silicone chips
almost to perfection 

Vs

No stable system of a handful of qubits
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Quantum Parallelism!

| ⟩0,0 ⟼ | ⟩0, 𝑓𝑓(0)
| ⟩1,0 ⟼ | ⟩1, 𝑓𝑓(1)

| ⟩0, 𝑓𝑓(0) + | ⟩1, 𝑓𝑓(1)
2

Single circuit for “simultaneous 
evaluation” of both 𝑓𝑓 0 and 𝑓𝑓 1

But wait a minute!
Measurement will necessarily destroy the state, 
yielding only one of  𝑓𝑓 0 , 𝑓𝑓 1 !!!

How to extract more useful information 
from a superposition state? 
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Quantum Parallelism + Quantum Interference!

Deutsch’s problem:
Determine whether 𝑓𝑓 𝑥𝑥 : 0,1 → 0,1 is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one! 

First algorithm to illustrate the power of
Quantum computation!
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The C-NOT gate  
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ions (NIST) 

A list of minimal 
requirements for creating a 
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proposed (IBM)
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First experimental 
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7-qubit NMR 
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only linear optical 
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2005
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D-Wave claims quantum 
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D-Wave One
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Practical error 
rates achieved 
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2012
2013

2014

300 qubit/particle 
quantum simulator
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A working transistor 
from a single atom

Data transfer via 
quantum teleportation 
over a distance of 10 
feet with zero percent 
error rate

Coherent 
superposition of 3 
billion qubits for 39 
min. at room 
temperature

Decoherence
suppressed for 2 
seconds at room 
temperature

IBM Shows First Full 
Error Detection for 
Quantum Computers

Quantum algorithms breakthroughs

Deutsch’s 
algorithm
demonstrates task quantum 
computer can perform in 
one shot that classically 
takes two shots.

Deutsch-Jozsa
algorithm 
Demonstrates an 
exponential separation
between classical 
deterministic and 
quantum algorithms
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algorithm
demonstrates a 
superpolynomial separation 
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quantum algorithms.
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Simon’s 
algorithm 
Demonstrates an 
exponential separation
between classical 
probabilistic and 
quantum algorithms
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Efficient algorithm for the 
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1996

Grover's 
algorithm 
Searching an unsorted 
database
Quadratic speedup over 
classical algorithms

Abelian hidden 
subgroup  problem
[Boneh and Lipton] 
Superpolynomial speedup 
over classical algorithms
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• Integer factorization algorithm 
• Discrete logarithm problem

Shor’s algorithm [Shor ’94]

Number theory  +  Parallelism  +  Interference

General number field sieve

𝑒𝑒𝑂𝑂(𝑛𝑛1/3 (log 𝑛𝑛) 2/3)

(Subexponential complexity)

Best classical algorithm

𝑂𝑂(𝑛𝑛3)
(Polynomial complexity)

Shor’s algorithm

To factor a 2048 bit number:

~ 150,000 years < 1 second
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• A quantum algorithm based on amplitude amplification
• Offers quadratic speedup over classical algorithms

Grover’s algorithm [Grover ’96]

Ω(𝑁𝑁) operations

Classical algorithms

𝑂𝑂( 𝑁𝑁) operations

Grover’s algorithm

Input: A search space of 𝑁𝑁 elements. 
Problem: Find an element of the space that satisfies a property

Search problem

Provably optimal runtime!
Break a 8 character password of only lowercase letters:

~ 4.13 years < 5 days



Quantum computer -
The Crypto eating monster



• RSA encryption scheme
• DSA – digital signature
• Diffie-Hellman (DH) key exchange 
• ECDSA (Elliptic curve cryptography)
• Pairing based cryptography  

Algorithms we use: Practically  implemented in:
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Algorithms we use: Practically  implemented in:
• PKI / PGP 
• SSL/TLS  (HTTPS, FTPS)
• SSH  (SFTP, SCP)
• IPsec  (IKE)
• IEEE 802.11
• ……
• Commitments
• Electronic voting
• Digital cash/credentials
• Multiparty computation
• ……

Today’s cryptography in use?

Broken by Shor-like
Quantum Algorithms

Effective key strength for conventional computing derived from NIST SP 800-57 
“Recommendation for Key Management”

Algorithm Key Length
Security Level

Conventional 
Computing

Quantum 
Computing

RSA-1024 1024 bits 80 bits 0 bits
RSA-2048 2048 bits 112 bits 0 bits
ECC-256 256 bits 128 bits 0 bits
ECC-384 384 bits 256 bits 0 bits



• Block ciphers
- AES

• Stream ciphers
• Hash functions

- SHA-1, SHA-2, SHA-3
• (All symmetric key primitives)

- MACs, HMACs, PRNGs, AE ciphers…
• Primitives based on NP-hard problems 

- Code-based, Lattice-based, Multivariate systems 

Influenced by Grover – like Algorithms

Doubling of key size
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• Block ciphers
- AES

• Stream ciphers
• Hash functions

- SHA-1, SHA-2, SHA-3
• (All symmetric key primitives)

- MACs, HMACs, PRNGs, AE ciphers…
• Primitives based on NP-hard problems 

- Code-based, Lattice-based, Multivariate systems 

Influenced by Grover – like Algorithms

Doubling of key size

Today’s cryptography in use?

Effective key strength for conventional computing derived from NIST SP 800-57 
“Recommendation for Key Management”

Algorithm Key Length
Security Level

Conventional Quantum
AES-128 128 bits 128 bits 64 bits
AES-256 256 bits 256 bits 128 bits

Algorithm
Security Level

Conventional 
(Preimage/Collisions)

Quantum 
(Preimage/Collisions)

SHA-256 256/128 bits 128/85 bits
SHA-512 512/256 bits 256/170 bits

Not trivial, 
but manageable!
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• Is it possible that in the future we come up with algorithms that
totally break symmetric crypto just as Shor’s algorithm breaks
Integer Factorization and Discrete Log?

• … and algorithms that break NP-compete problems?

… OR …

• Is it just a mere coincidence that we came up with efficient
Quantum Integer Factorization algorithm before classical…. 

Some emerging questions!

NOBODY KNOWS!!!
Actually nobody knows…

Where exactly 
the algorithms solvable by quantum computers in polynomial time 

fit in our established complexity hierarchy!  



• P: solvable in deterministic polynomial time
• NP: solvable in non-deterministic polynomial time
• PSPACE: solvable in polynomial space
• BPP: solvable in polynomial time with bounded probability error
• BQP: solvable in polynomial time by a quantum computer with bounded 

probability error

Alphabet soup  of  Computational problems

We know that:
P ⊆ NP    ⊆ PSPACE  
P ⊆ BPP ⊆ BQP ⊆ PSPACE

PSPACE

NP

P

BPPBQP



What we don’t know (and has implications to crypto):
BPP     ? BQP

PSPACE

NP

P

BQP

BQP     ? NP

BPP



What we don’t know (and has implications to crypto):
BPP     ? BQP

PSPACE

NP

P

BQP

BQP     ? NP

Extreme cases:
BPP     = BQP

We don’t need quantum computers, 
we just need to discover the 
classical algorithms!!!

BPP



What we don’t know (and has implications to crypto):
BPP     ? BQP

PSPACE

NP

P

BQP

BQP     ? NP

Extreme cases:
BPP     = BQP

We don’t need quantum computers, 
we just need to discover the 
classical algorithms!!!

NP    ⊆ BQP

Classical cryptography is dead!!!

BPP



What we don’t know (and has implications to crypto):
BPP     ? BQP

PSPACE

NP

P

BQP

BQP     ? NP

Extreme cases:
BPP     = BQP

We don’t need quantum computers, 
we just need to discover the 
classical algorithms!!!

NP    ⊆ BQP

Classical cryptography is dead!!!

Both rather unlikely!

BPP



What we don’t know (and has implications to crypto):
BPP     ? BQP

PSPACE

NP

P

BQP

BQP     ? NP

Extreme cases:
BPP     = BQP

We don’t need quantum computers, 
we just need to discover the 
classical algorithms!!!

NP    ⊆ BQP

Classical cryptography is dead!!!

Both rather unlikely!

Optimality of 
Grover’s algorithm indicates     NP    BQP   !!!

BPP
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It’s rather unlikely that (under the assumption that they are ever built)
quantum computers will kill ALL classical cryptography…
…At least not symmetric cryptography!

What about public key cryptography?

PKC discovered

1976 20XX

Quantum 
computer built

Then what?

Will we need quantum cryptography?
Or

Is it possible to have strong classical cryptography
in the quantum world?
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Quantum Cryptography

• Quantum key distribution
• Quantum random number generator
• Quantum commitment
• Quantum money
• Quantum e-voting
• …

Use quantum mechanical properties to perform 
cryptographic tasks

Not based on computational assumptions

Even if quantum computers are built       
it may take years (if ever) until quantum 
cryptography is used in everyday life!!!  

Benefit only to governments, 
corporations, not to protect the people!
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Post Quantum Cryptography

• Code-based systems

• Multivariate Quadratic systems 

• Lattice-based systems 

• Hash-based systems

• Isogeny based systems 

Classical Cryptosystems believed to be secure 

against quantum computer attacks 



Code-based Cryptosystems

McEliece ’78! As old as RSA!

• Noisy channel communication:

Channel

Encoder 𝑐𝑐 = 𝑐𝑐1 ⋯ 𝑐𝑐𝑛𝑛

Decoder
𝑦𝑦 = 𝑐𝑐 + 𝑒𝑒�𝑥𝑥

𝑒𝑒 = 𝑒𝑒1 ⋯ 𝑒𝑒𝑛𝑛

𝑥𝑥 = 𝑥𝑥1 ⋯ 𝑥𝑥𝑘𝑘

𝑘𝑘 < 𝑛𝑛



Code-based Cryptosystems

Encoder

Decoder

𝑐𝑐 = 𝑐𝑐1 ⋯ 𝑐𝑐𝑛𝑛

𝑦𝑦 = 𝑐𝑐 + 𝑒𝑒�𝑥𝑥

𝑒𝑒 = 𝑒𝑒1 ⋯ 𝑒𝑒𝑛𝑛

𝑥𝑥 = 𝑥𝑥1 ⋯ 𝑥𝑥𝑘𝑘

Add intentional noise

McEliece ’78! As old as RSA!

• In cryptography:



Code-based Cryptosystems

𝑥𝑥 = 𝑥𝑥1 ⋯ 𝑥𝑥𝑘𝑘 Encoder 𝑐𝑐 = 𝑐𝑐1 ⋯ 𝑐𝑐𝑛𝑛

𝑦𝑦 = 𝑐𝑐 + 𝑒𝑒�𝑥𝑥

𝑒𝑒 = 𝑒𝑒1 ⋯ 𝑒𝑒𝑛𝑛

Decoder

Add intentional noise

• Hard underlying problem (NP hard): Decoding random linear codes 

• Confidence in encryption schemes Given  𝑚𝑚𝑚𝑚 + 𝑒𝑒 find  𝑚𝑚
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• Security models
- What are the exact capabilities of quantum adversaries?

• Security proofs
- Many classical techniques don’t work in the quantum world

• Security of hard problems
- Quantum algorithms for the hard problems?
- Ex. Smart use of Grover, dedicated algorithms
- Number of qubits for the algorithms?

Challenges in Post Quantum Cryptography



• Key sizes, signature sizes and speed
- Huge public keys, or signatures …. Or slow
- ex. ECC 256b key vs McElliece 500KB key
- ex. ECC 80B signature vs MQDSS 40KB signature

• Software and hardware implementation 
- Optimizations, physical security

• Standardization
- What is the right choice of algorithm?

• Deployment
- In TLS, smart cards, storage…
- Will take a long time…

Challenges in Post Quantum Cryptography



Timeline:
• Fall 2016 – call for proposals
• November 2017 – deadline for submissions
• January 2019 – second round candidates
• 2-4 years from now – results
• 2 years later – Draft standard ready
• Deployment ?



• NOT a competition
• 82 submissions, 69 “complete and proper”
• 20 signatures
• 49 Key encapsulation mechanisms
• Around 10 broken
• Radboud involved in 8 !

Timeline:
• Fall 2016 – call for proposals
• November 2017 – deadline for submissions
• January 2019 – second round candidates
• 2-4 years from now – results
• 2 years later – Draft standard ready
• Deployment ?



Digital Security Group – Radboud University
involved in 8 Post Quantum Crypto candidates

KEMs

• Classic McEliece
- Code-based

Lattice based
• CRYSTALS-KYBER
• NTRU-HRSS-KEM
• New Hope 

- Implemented and tested by Google

• SIKE
- Isogeny-based

Signatures

• CRYSTALS-DILITHIUM
- Lattice based

• SPHINCS+
- Hash based 

• MQDSS
- [Chen, Hülsing, Rijneveld, S, Schwabe, 16]
- NIST candidate
- First provably secure MQ signature scheme
- Hard problem: Solving systems of quadratic 

equations (MQ problem)



Some final words

If computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,
And they’ll read our email,
Till we get crypto that’s quantum, 
and daunt ’em.

Jennifer and Peter Shor

To read our E-mail, how mean
of the spies and their quantum machine;
be comforted though,
they do not yet know
how to factorize twelve or fifteen.

Volker Strassen

Thank you for listening!

?
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1994

Shor’s algorithm 
efficient quantum algorithm for 
Integer factorization problem & 
Discrete logarithm problem
(superpolynomial speedup)

1996
Grover's algorithm 
Searching an unsorted 
database (quadratic speedup)

November, 2017
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Today’s cryptography in use?

1. Choose two large prime numbers p, q.
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2. Compute n = pq,  z = (p-1)(q-1)

3. Choose e (with e<n) coprime with z. 

4. Choose d such that  ed mod z  = 1 

5. Public key is (n,e). Private key is (n,d).
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1. To encrypt m, compute x = m   mod ne

2. To decrypt received x, compute m = x   mod nd

m  =  (m   mod n)
e

mod n
dMagic

happens!
x



• Discrete log

• Example – Diffie-Hellman Key Exchange:

Today’s cryptography in use?



A Swiss army knife in cryptography – Digital signatures
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+ K 

B
-

1. To encrypt m, compute x = m   mod ne

2. To decrypt received x, compute m = x   mod nd

m  =  (m   mod n)
e

mod n
dMagic

happens!
x



MQDSS 

• [Chen, Hülsing, Rijneveld, S, Schwabe, 16]
• NIST candidate
• First provably secure signature scheme
• Hard problem: Solving systems of quadratic equations (MQ problem) 

Quadratic polynomials

Solve the system of equations



MQDSS



Code-based Cryptosystems

𝑥𝑥 = 𝑥𝑥1 ⋯ 𝑥𝑥𝑘𝑘 Encoder
𝑆𝑆𝑘𝑘×𝑘𝑘 ⋅ 𝐺𝐺𝑘𝑘×𝑛𝑛⋅ 𝑃𝑃𝑛𝑛×𝑛𝑛

Goppa code
Permutation 
matrix

𝑐𝑐 = 𝑐𝑐1 ⋯ 𝑐𝑐𝑛𝑛

𝑦𝑦 = 𝑐𝑐 + 𝑒𝑒�𝑥𝑥

𝑒𝑒 = 𝑒𝑒1 ⋯ 𝑒𝑒𝑛𝑛

Decoder

𝐷𝐷𝐷𝐷𝑐𝑐𝐺𝐺 𝑃𝑃−1𝑆𝑆−1

Efficient decoder for ||𝐞𝐞|| ≤ t
Add intentional noise

• Hard underlying problem (NP hard): Decoding random linear codes 

• Confidence in encryption schemes 
Scrambler 
matrix

Given  𝑚𝑚𝑚𝑚 + 𝑒𝑒 find  𝑚𝑚
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The origins …

Turing 
Machine

Turing ’36

Any algorithmic process 
can be simulated efficiently

using a Turing machine

von Neumann
architecture

Transistors

The classical 
computer

Theoretical model

Hardware
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The C-NOT gate  
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realized with trapped 
ions (NIST) 

A list of minimal 
requirements for creating a 
quantum computer 
proposed (IBM)

1998

First experimental 
demonstration of a 
quantum algorithm using 
a working 2-qubit NMR 
quantum computer

7-qubit NMR 
computer 
demonstrated

2000
NMR quantum computation 
disputed
The field of linear optical 
quantum computing launched

2001

Controlled-not gates using 
only linear optical 
elements demonstrated

2003

Qubyte created
Quantum information 
between "quantum 
memories“ transferred

2005

First 12 qubit
quantum computer

2006 2015
D-Wave Systems 
claims to have 
working 28-qubit 
quantum computer

2007
2009

2010

First Electronic 
Quantum Processor 
Created

Optical Quantum 
Computer Simulates 
Hydrogen

2011

D-Wave claims quantum 
annealing, introduces
D-Wave One

14-Qubit 
Entanglement
achieved

Practical error 
rates achieved 
(NIST)

2012
2013

2014

300 qubit/particle 
quantum simulator
created

A working transistor 
from a single atom

Data transfer via 
quantum teleportation 
over a distance of 10 
feet with zero percent 
error rate

Coherent 
superposition of 3 
billion qubits for 39 
min. at room 
temperature

Decoherence
suppressed for 2 
seconds at room 
temperature

IBM Shows First Full 
Error Detection for 
Quantum Computers

Implementation milestones
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Entanglement – Quantum weirdness example 

Bell states:

Measurement of first qubit

𝑃𝑃 11 = 1
2

⇒

𝑃𝑃 00 = 1
2

⇒

The only two 
possible 

outcomes!

The first qubit is 0

The first qubit is 1

The second qubit is 0
with probability 1

The second qubit is 1
with probability 1

The measurement of the second qubit
always gives the same result

as the measurement of the first qubit!

Possible since 𝜓𝜓 ≠ 𝜑𝜑1 ⨂ 𝜑𝜑2 ‼!
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Quantum Interference!

Deutsch’s problem:
Determine whether 𝑓𝑓 𝑥𝑥 : 0,1 → 0,1 is constant or balanced

Classically, we need 2 evaluations!
Using quantum parallelism + interference, only one! 

Measuring the first qubit yields:

0 1 
constant balanced

First algorithm to illustrate the power of
Quantum computation!
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• Integer factorization algorithm 
• Discrete logarithm problem

Shor’s algorithm [Shor ’94]

Convert the problem
to the problem of

period finding
(can be implemented

efficiently classically)

Find the period using
Simultaneous evaluation
and
Quantum Fourier Transform

(quantum speedup)

Simon’s algorithm: 
Finds the unknown period of a periodic function

Number theory  +  Parallelism  +  Interference
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Shor’s algorithm [Shor ’94]

od 𝑁𝑁𝑁𝑁 (𝑥𝑥𝑥𝑥≠±1 mod 𝑁𝑁𝑁𝑁) then gcd(𝑥𝑥𝑥𝑥+1, 𝑁𝑁𝑁𝑁) is a nontrivial factor of 𝑁𝑁𝑁𝑁.
𝑥𝑥 𝑎𝑎 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑥𝑥 𝑎𝑎 mod 𝑁𝑁𝑁𝑁 is a periodic function, gcd  𝑥𝑥, 𝑁𝑁 gcd gcd  𝑥𝑥, 𝑁𝑁

𝑥𝑥, 𝑁𝑁 𝑥𝑥𝑥𝑥, 𝑁𝑁𝑁𝑁 𝑥𝑥, 𝑁𝑁 gcd  𝑥𝑥, 𝑁𝑁 =1
Important facts: 
• If 𝑥𝑥 is a nontrivial square root of 1 mod 𝑁𝑁 (𝑥𝑥 ≠ ±1 mod 𝑁𝑁) then 

gcd(𝑥𝑥 + 1, 𝑁𝑁) is a nontrivial factor of 𝑁𝑁.

Number theory  



Shor’s algorithm [Shor ’94]

cd⁡( 𝑦𝑦 𝑟𝑟/2 𝑦𝑦𝑦𝑦 𝑦𝑦 𝑟𝑟/2 𝑟𝑟𝑟𝑟/2 𝑦𝑦 𝑟𝑟/2 +1, 𝑁𝑁𝑁𝑁) is a nontrivial factor of 𝑁𝑁𝑁𝑁.
2 𝑦𝑦 𝑟𝑟/2  is a nontrivial square root of 1 mod 𝑁𝑁𝑁𝑁. Thus
cd gcd  𝑦𝑦, 𝑁𝑁 𝑦𝑦, 𝑁𝑁 𝑦𝑦𝑦𝑦, 𝑁𝑁𝑁𝑁 𝑦𝑦, 𝑁𝑁 gcd  𝑦𝑦, 𝑁𝑁 =1, then with probability at
least ½, 
od 𝑁𝑁𝑁𝑁 (𝑥𝑥𝑥𝑥≠±1 mod 𝑁𝑁𝑁𝑁) then gcd(𝑥𝑥𝑥𝑥+1, 𝑁𝑁𝑁𝑁) is a nontrivial factor of 𝑁𝑁𝑁𝑁.
𝑥𝑥 𝑎𝑎 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑥𝑥 𝑎𝑎 mod 𝑁𝑁𝑁𝑁 is a periodic function, gcd  𝑥𝑥, 𝑁𝑁 gcd gcd  𝑥𝑥, 𝑁𝑁

𝑥𝑥, 𝑁𝑁 𝑥𝑥𝑥𝑥, 𝑁𝑁𝑁𝑁 𝑥𝑥, 𝑁𝑁 gcd  𝑥𝑥, 𝑁𝑁 =1
Important facts: 
• If 𝑥𝑥 is a nontrivial square root of 1 mod 𝑁𝑁 (𝑥𝑥 ≠ ±1 mod 𝑁𝑁) then 

gcd(𝑥𝑥 + 1, 𝑁𝑁) is a nontrivial factor of 𝑁𝑁.
Thm: If 𝑁𝑁 is an odd composite number, 𝑟𝑟 is a period of 𝐹𝐹, 

gcd(𝑦𝑦𝑟𝑟/2 + 1, 𝑁𝑁) is a nontrivial factor of 𝑁𝑁.

Number theory  



Shor’s algorithm [Shor ’94]  - Step by step

1. Choose                            , such that
2. Prepare a quantum circuit:

𝑛𝑛

𝑡𝑡

(𝑈𝑈𝑗𝑗)



Shor’s algorithm [Shor ’94]  - Step by step

3. =     (Initialize) 

𝑡𝑡

𝑛𝑛
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7. (inverse QDFT) 

𝑡𝑡

𝑛𝑛
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4. Measure to obtain 

𝑡𝑡

𝑛𝑛 is rational

Can be estimated using 
continued fractions 

A candidate 
for the period!

𝑠𝑠
𝑟𝑟

𝑠𝑠
𝑟𝑟
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Problem: Find 𝑠𝑠.

Discrete logarithm problem

𝑠𝑠𝑠𝑠,1)
𝑓𝑓: ℤ 𝑝𝑝 × ℤ 𝑝𝑝 →ℤ 𝑝𝑝 ∗ 𝑓𝑓𝑓𝑓: ℤ 𝑝𝑝 ℤ ℤ 𝑝𝑝 𝑝𝑝𝑝𝑝 ℤ 𝑝𝑝 × ℤ 𝑝𝑝 ℤ ℤ 𝑝𝑝

𝑝𝑝𝑝𝑝 ℤ 𝑝𝑝 →ℤ 𝑓𝑓: ℤ 𝑝𝑝 × ℤ 𝑝𝑝 →ℤ 𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝 𝑓𝑓: ℤ 𝑝𝑝 × ℤ 𝑝𝑝 →ℤ
𝑝𝑝 ∗ ∗ 𝑓𝑓: ℤ 𝑝𝑝 × ℤ 𝑝𝑝 →ℤ 𝑝𝑝 ∗ ,  𝑓𝑓𝑓𝑓 𝑥𝑥,𝑦𝑦 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 𝑥𝑥,𝑦𝑦 = 𝑔𝑔 𝑥𝑥 𝑔𝑔𝑔𝑔
𝑔𝑔 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑔𝑔 𝑥𝑥 𝑏𝑏 −𝑦𝑦 𝑏𝑏𝑏𝑏 𝑏𝑏 −𝑦𝑦 −𝑦𝑦𝑦𝑦 𝑏𝑏 −𝑦𝑦

,  𝑓𝑓 𝑥𝑥, 𝑦𝑦 = 𝑔𝑔𝑥𝑥𝑏𝑏−𝑦𝑦

𝑓𝑓 is periodic with period (𝑠𝑠, 1)

Main Idea
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Shor’s algorithm for discrete log [Shor ’94]

An implementation of the unitary
𝑈𝑈: | ⟩𝑥𝑥 | ⟩𝑦𝑦 | ⟩𝑧𝑧 ⟼ | ⟩𝑥𝑥 | ⟩𝑦𝑦 | ⟩𝑧𝑧 + 𝑓𝑓(𝑥𝑥, 𝑦𝑦) , where  𝑓𝑓 𝑥𝑥, 𝑦𝑦 = 𝑔𝑔𝑥𝑥𝑏𝑏−𝑦𝑦

1. ⟩0 | ⟩0 | ⟩0 - initial state
2. ⟶ 1

2𝑛𝑛 ∑𝑥𝑥=0
2𝑛𝑛−1 ∑𝑦𝑦=0

2𝑛𝑛−1 | ⟩𝑥𝑥 | ⟩𝑦𝑦 | ⟩0 - superposition
3. ⟶ 1

2𝑛𝑛 ∑𝑥𝑥=0
2𝑛𝑛−1 ∑𝑦𝑦=0

2𝑛𝑛−1 | ⟩𝑥𝑥 | ⟩𝑦𝑦 | ⟩𝑓𝑓(𝑥𝑥, 𝑦𝑦) - apply 𝑈𝑈
4. ⟶ 1

𝑝𝑝
∑𝑙𝑙=0

𝑝𝑝−1 | ⟩𝑠𝑠𝑠𝑠/𝑝𝑝 | ⟩𝑙𝑙/𝑝𝑝 | �𝑓𝑓 (𝑠𝑠𝑠𝑠, 𝑙𝑙) - apply inverse Fourier transform
5. ⟶ 𝑠𝑠𝑠𝑠/𝑝𝑝, 𝑙𝑙/𝑝𝑝 – measure first two registers
6. If 𝑝𝑝 is known, easy to find 𝑠𝑠, otherwise use continuous fraction 

algorithm  

Setup



Shor’s algorithm for discrete log [Shor ’94]

𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙/𝑝𝑝𝑝𝑝, 𝑙𝑙𝑙𝑙/𝑝𝑝𝑝𝑝 – measure first two registers
1   𝑝𝑝 1 1   𝑝𝑝 𝑝𝑝 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝 1   𝑝𝑝 𝑙𝑙=0 𝑝𝑝−1 | 𝑠𝑠𝑙𝑙/𝑝𝑝 | 𝑙𝑙/𝑝𝑝 |  𝑓𝑓 (𝑠𝑠𝑙𝑙,𝑙𝑙)  𝑙𝑙𝑙𝑙=0 

𝑙𝑙=0 𝑝𝑝−1 | 𝑠𝑠𝑙𝑙/𝑝𝑝 | 𝑙𝑙/𝑝𝑝 |  𝑓𝑓 (𝑠𝑠𝑙𝑙,𝑙𝑙)  𝑝𝑝𝑝𝑝−1 𝑙𝑙=0 𝑝𝑝−1 | 𝑠𝑠𝑙𝑙/𝑝𝑝 | 𝑙𝑙/𝑝𝑝 |  𝑓𝑓 (𝑠𝑠𝑙𝑙,𝑙𝑙)  | 
𝑠𝑠𝑙𝑙/𝑝𝑝 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙/𝑝𝑝𝑝𝑝 𝑠𝑠𝑙𝑙/𝑝𝑝 | 𝑙𝑙/𝑝𝑝 𝑙𝑙𝑙𝑙/𝑝𝑝𝑝𝑝 𝑙𝑙/𝑝𝑝 |  𝑓𝑓 (𝑠𝑠𝑙𝑙,𝑙𝑙)  𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓 (𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙)  𝑓𝑓 (𝑠𝑠𝑙𝑙,𝑙𝑙)  𝑙𝑙=0 
𝑝𝑝−1 | 𝑠𝑠𝑙𝑙/𝑝𝑝 | 𝑙𝑙/𝑝𝑝 |  𝑓𝑓 (𝑠𝑠𝑙𝑙,𝑙𝑙)    - apply inverse Fourier transform
1  2 𝑛𝑛 1 1  2 𝑛𝑛 2 𝑛𝑛 2 2 𝑛𝑛 𝑛𝑛𝑛𝑛 2 𝑛𝑛 1  2 𝑛𝑛 𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  2 𝑛𝑛 −1 

| 𝑥𝑥 | 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦)   𝑥𝑥𝑥𝑥=0 𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦)    2 𝑛𝑛 2 
2 𝑛𝑛 𝑛𝑛𝑛𝑛 2 𝑛𝑛 −1 𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦)    𝑦𝑦=0  2 𝑛𝑛 −1 
| 𝑥𝑥 | 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦)  𝑦𝑦𝑦𝑦=0 𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦)   2 𝑛𝑛 2 2 𝑛𝑛 𝑛𝑛𝑛𝑛 2 𝑛𝑛
−1 𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦)  | 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 | 𝑦𝑦 𝑦𝑦𝑦𝑦 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 
𝑓𝑓(𝑥𝑥,𝑦𝑦)  𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 𝑓𝑓(𝑥𝑥,𝑦𝑦)   𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 
𝑓𝑓(𝑥𝑥,𝑦𝑦)      - apply 𝑈𝑈𝑈𝑈
1  2 𝑛𝑛 1 1  2 𝑛𝑛 2 𝑛𝑛 2 2 𝑛𝑛 𝑛𝑛𝑛𝑛 2 𝑛𝑛 1  2 𝑛𝑛 𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  2 𝑛𝑛 −1 

| 𝑥𝑥 | 𝑦𝑦 | 0   𝑥𝑥𝑥𝑥=0 𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 0    2 𝑛𝑛 2 2 𝑛𝑛 𝑛𝑛𝑛𝑛 2 
𝑛𝑛 −1 𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 0    𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 0  
𝑦𝑦𝑦𝑦=0 𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 0   2 𝑛𝑛 2 2 𝑛𝑛 𝑛𝑛𝑛𝑛 2 𝑛𝑛 −1 𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦
| 0  | 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 | 𝑦𝑦 𝑦𝑦𝑦𝑦 𝑦𝑦 | 0 0 0  𝑦𝑦=0  2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 0   𝑥𝑥=0  2 𝑛𝑛 −1  𝑦𝑦=0  
2 𝑛𝑛 −1 | 𝑥𝑥 | 𝑦𝑦 | 0      superposition
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Grover’s algorithm [Grover ’96]

Recognizes a solution
of the search problem

Moves the state vector
closer to the solution space



(For simplicity: One solution)
• ⟩|𝜔𝜔 - solution, ⟩|𝑠𝑠𝑠 = 1

𝑁𝑁−1
∑ 𝑥𝑥≠𝜔𝜔 ⟩|𝑥𝑥 - not solutions

• ⟩|𝑠𝑠 = 𝑁𝑁−1
𝑁𝑁

⟩|𝑠𝑠𝑠 + 1
𝑁𝑁

⟩|𝜔𝜔

• 𝑈𝑈𝜔𝜔 ⟩|𝑠𝑠 = 𝑁𝑁−1
𝑁𝑁

⟩|𝑠𝑠𝑠 − 1
𝑁𝑁

⟩|𝜔𝜔 - action of the oracle

• 𝑈𝑈𝑠𝑠𝑈𝑈𝜔𝜔 ⟩|𝑠𝑠 = 𝑁𝑁−4
𝑁𝑁

𝑁𝑁−1
𝑁𝑁

⟩|𝑠𝑠𝑠 − 3𝑁𝑁−4
𝑁𝑁

1
𝑁𝑁

⟩|𝜔𝜔
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(For simplicity: One solution)
• ⟩|𝜔𝜔 - solution, ⟩|𝑠𝑠𝑠 = 1

𝑁𝑁−1
∑ 𝑥𝑥≠𝜔𝜔 ⟩|𝑥𝑥 - not solutions
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After 𝑟𝑟 ≈ 𝜋𝜋 𝑁𝑁/4 rounds the solution is 
obtained with great probability!
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Based on 
Amplitude amplification

• Grover's algorithm (’96)
• Searching an unsorted database
• Quadratic speedup over classical

algorithms
• Collision finding problem (Brassard

et al. ’97)
• Polynomial (3/2) speedup over classical

algorithms
•
•
•

Summary of quantum algorithmsWhy do we care so much about these algorithms?

If they are ever 
practically 
implemented

Today’s security infrastructure for any 
kind of data communication/ storage 
will be rendered worthless!?!
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MQ (multivariate quadratic) Cryptosystems

• Fast, simple operations, short signatures

• Large keys, no security proofs

• Parameters for Gui [Petzoldt, Chen, Yang, Tao, Ding, 15], Rainbow [Ding, Schmidt, 04]
• Implementation [Chen, Li, Peng, Yang, Cheng, 17]

Security 
(post quantum)

Signature scheme Public key 
(kB)

Private key 
(kB)

Signature 
size (bit)

Sign()
k cycles

Verify() 
k cycles

80 Gui(GF(2),120,9,3,3,2) 110.7 3.8 129
100 Gui(GF(2),161,9,6,7,2) 271.8 7.5 181
128 GUI(4,120,17,8,8,2) 225.8 9.6 288 7,992.8 342.5
80 Rainbow(GF(256),19,12,13) 25.3 19.3 352
100 Rainbow(GF(16),25,25,25) 65.9 43.2 288
128 Rainbow(GF(31),28,28,28) 123.2 74.5 420 77.4 70.8



MQ (multivariate quadratic) Cryptosystems

• Hard underlying problem (NP hard): Polynomial system solving (PoSSo) 

Two new provably secure signatures 
• MQDSS [Chen, Hülsing, Rijneveld, S, Schwabe, 16] – security proof in the ROM 
• Sofia [Chen, Hülsing, Rijneveld, S, Schwabe, 17] – security proof in the Quantum ROM 

• Transform from provably secure Identification schemes

Security 
(post quantum)

Signature scheme Public key 
(B)

Private key 
(B)

Signature size 
(KB)

Sign()
k cycles

Verify() 
k cycles

128 (ROM) MQDSS-31-64 72 64 40 8,510.6 5,752.6
128 (QROM) Sofia-4-128 64 32 123 21,305.5 15,492.6



MQDSS



Lattice-based Cryptosystems

• Encryption, signatures, key exchange 
• Many different hard problems

Fig. from Joop van de Pol’s MSc-thesis
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smallapproximately same



Lattice-based Cryptosystems

Scheme Security 
bits/(type)

Hard problem KeyGen
(cycles)

Enc
(cycles)

Dec 
(cycles)

Public key 
(bytes)

Private key 
(bytes)

Ciphertext
(bytes)

FRODO 130 (pass.) LWE 2 938 K 3 484 K 338 K 11 296 11280 11288
NewHope 255 (pass.) Ring-LWE 88 920 110 986 19 422 1824 1792 2048
NTRU Prime 129 (CCA) NTRU like > 51488 1232 1417 1141
Kyber 161 (CCA) Module-LWE 77 892 119 652 125 736 1088 2400 1184

• FRODO [Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, 16]
• NewHope [Alkim, Ducas, Pöppelmann, Schwabe, 16]

- Google Experiment for Chrome 2016: New hope + X25519 used in Chrome Canary 
for access to some Google services

• NTRU Prime [Bernstein, Chuengsatiansup, Lange, van Vredendaal, 16]
• Kyber [Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Stehlé, 17]



OTS OTS OTS OTS OTS OTS OTS

HH H H H H H H

H H H H

H H

H

PK

OTS

Hash-based Signatures

• Only secure hash function needed (security well understood, standard model proof)

• Merkle, 89

Figure: Andreas Hülsing



OTS OTS OTS OTS OTS OTS OTS

HH H H H H H H

H H H H

H H

H

PK

OTS
SK

Hash-based Signatures

Figure: Andreas Hülsing

• Only secure hash function needed (security well understood, standard model proof)

• Merkle, 89



OTS OTS OTS OTS OTS OTS OTS

HH H H H H H H

H H H H

H H

H

PK
SIG = (i=2,    ,     ,     ,     ,      )

OTS
SK

• Only secure hash function needed (security well understood, standard model proof)

• Merkle, 89

Hash-based Signatures

Figure: Andreas Hülsing



Hash-based Signatures

• Most trusted post quantum signatures
• Two Internet drafts (drafts for RFCs), one in „waiting for ISRG review“

• XMSS – stateful, but forward secrecy [Buchmann, Dahmen, Hülsing, 11]
• SPHINCS – stateless [Bernstein, Hopwood, Hülsing, Lange, Niederhagen, 

Papachristodoulou, Schneider, Schwabe, O’Hearn, 15] 

Sign
(ms)

Verify
(ms)

Signature 
(byte)

Public Key 
(byte)

Secret Key 
(byte)

Bit 
Security

XMSS-SHA-2 35.60 1.98 2084 1700 3,364 157
XMSS-AES-NI 0.52 0.07 2452 916 1,684 84
SPHINCS-256 13.56 0.39 41000 1056 1088 128



• Key sizes, signature sizes and speed
- Huge public keys, or signatures …. Or slow
- ex. ECC 256b key vs McElliece 500KB key
- ex. ECC 80B signature vs MQDSS 40KB signature

• Software and hardware implementation 
- Optimizations, physical security

• Standardization
- What is the right choice of algorithm?

• Deployment
- In TLS, DTLS, constrained devices, storage…
- Will take a long time…

Challenges in Post Quantum Cryptography



Thank you again for listening!
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